Liking cljdoc? Tell your friends :D

thurber

thurber

Clojars Project

Apache Beam and Google Cloud Dataflow on ~~steroids~~ Clojure. The walkthrough explains everything.

This is alpha software. Always use latest version & watch release notes carefully. API subject to mood swings.

Quickstart

  1. Clone & cd into this repository.
  2. lein repl
  3. Copy & paste:
(ns try-thurber
  (:require [thurber :as th]
            [thurber.sugar :refer :all]))

(->
  (th/create-pipeline)

  (th/apply!
    (read-text-file
      "demo/word_count/lorem.txt")
    (th/fn* extract-words [sentence]
      (remove empty? (.split sentence "[^\\p{L}]+")))
    (count-per-element)
    (th/fn* format-as-text
      [[k v]] (format "%s: %d" k v))
    (log-sink))

  (th/run-pipeline!))

Output:

...
INFO thurber - extremely: 1
INFO thurber - undertakes: 1
INFO thurber - pleasure: 7
INFO thurber - you: 2
...

Project Goals

  • Enable Clojure
    • Bring Clojure's powerful, expressive toolkit (destructuring, immutability, REPL, async tools, etc etc) to Apache Beam.
  • REPL Oriented
    • Functions are idiomatic/pure Clojure functions by default. (E.g., lazy sequences are supported making iterative event output optional/unnecessary, etc.)
    • Develop and test pipelines incrementally from the REPL.
    • Evaluate/learn Beam semantics (windowing, triggering) interactively.
  • Avoid Macros
    • Limit macro infection. Most thurber constructions are macro-less, use of any thurber macro constructions (like inline functions) is optional.
  • AOT Nothing
    • Fully dynamic experience. Reload namespaces at whim. thurber's dependency on Beam, Clojure, etc versions are completely dynamic/floatable. No forced AOT'd dependencies, Etc.
  • No Lock-in
    • Pipelines can be composed of Clojure and Java transforms. Incrementally refactor your pipeline to Clojure or back to Java.
  • Not Afraid of Java Interop
    • Wherever Clojure's Java Interop is performant and works cleanly with Beam's fluent API, encourage it; facade/sugar functions are simple to create and left to your own domain-specific implementations.
  • Completeness
    • Support all Beam capabilities (Transforms, State & Timers, Side Inputs, Output Tags, etc.)
  • Performance
    • Be finely tuned for data streaming.

Documentation

Demos

Each namespace in the demo/ source directory is a pipeline written in Clojure using thurber. Comments in the source highlight salient aspects of thurber usage.

Along with the code walkthrough these are the best way to learn thurber's API and serve as recipes for various scenarios (use of tags, side inputs, windowing, combining, Beam's State API, etc etc.)

To execute a demo, start a REPL and evaluate (demo!) from within the respective namespace.

Word Count

The word_count package contains ports of Beam's Word Count Examples to Clojure/thurber.

Mobile Gaming Examples

Beam's Mobile Gaming Examples have been ported to Clojure using thurber.

These are fully functional ports. They require deployment to GCP Dataflow:

Make It Fast

First make your pipeline work. Then make it fast.

Streaming/big data implies hot code paths. Use Clojure type hints liberally within your stream functions.

If deploying to GCP, use Dataflow profiling to zero in on areas to optimize.

References

License

Copyright © 2020 Aaron Dixon

Like Clojure distributed under the Eclipse Public License.

Can you improve this documentation?Edit on GitHub

cljdoc is a website building & hosting documentation for Clojure/Script libraries

× close