This section covers the PostgreSQL-specific features that HoneySQL supports out of the box for which you previously needed the nilenso/honeysql-postgres library.
Everything that the nilenso library provided (in 0.4.112) is implemented directly in HoneySQL 2.x although a few things have a slightly different syntax.
If you are using HoneySQL with the Node.js PostgreSQL driver, it
only accepts numbered placeholders, not positional placeholders,
so you will need to specify the :numbered true option that was
added in 2.4.962. You may find it convenient to set this option
globally, via set-options!.
The code examples herein assume:
(refer-clojure :exclude '[update set])
(require '[honey.sql :as sql]
'[honey.sql.helpers :refer [select from where
update set
insert-into values
create-table with-columns create-view create-extension
add-column alter-table add-index
alter-column rename-column rename-table
drop-table drop-column drop-index drop-extension
upsert returning on-conflict on-constraint
do-update-set do-nothing]])
Clojure users can opt for the shorter (require '[honey.sql :as sql] '[honey.sql.helpers :refer :all]) but this syntax is not available to ClojureScript users.
HoneySQL supports :array as special syntax to produce ARRAY[..] expressions:
user=> (sql/format {:select [[[:array [1 2 3]] :a]]})
["SELECT ARRAY[?, ?, ?] AS a" 1 2 3]
PostgreSQL also has an "array constructor" for creating arrays from subquery results.
SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
As of 2.5.1091, HoneySQL supports this syntax directly:
user=> (sql/format {:select [[[:array {:select :oid :from :pg_proc :where [:like :proname [:inline "bytea%"]]}]]]})
["SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%')"]
Prior to 2.5.1091, you had to use HoneySQL's "as-is" function syntax to circumvent the special syntax:
user=> (sql/format {:select [[[:'ARRAY {:select :oid :from :pg_proc :where [:like :proname [:inline "bytea%"]]}]]]})
["SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%')"]
A number of PostgreSQL operators contain @, #, or ~ which are not legal in a Clojure keyword or symbol (as literal syntax). The namespace honey.sql.pg-ops provides convenient symbolic names for these JSON and regex operators, substituting at for @, hash for #, and tilde for ~.
The regex operators also have more memorable aliases: regex for ~, iregex for ~*, !regex for !~, and !iregex for !~*.
Requiring the namespace automatically registers these operators for use in expressions:
user=> (require '[honey.sql.pg-ops :refer [regex]])
nil
user=> (sql/format {:select [[[regex :straw [:inline "needle"]] :match]] :from :haystack})
["SELECT straw ~ 'needle' AS match FROM haystack"]
If you are using JSON with PostgreSQL, you will probably try to pass Clojure data structures as values into your HoneySQL DSL -- but HoneySQL will see those vectors as function calls and hash maps as SQL statements, so you need to tell HoneySQL not to do that. There are two possible approaches:
[:param :myval]) instead of having the values directly in the DSL structure and then pass {:params {:myval some-json}} as part of the options in the call to format, or[:lift ..] wrapped around any structured values which tells HoneySQL not to interpret the vector or hash map value as a DSL: [:lift some-json].Upserting data is relatively easy in PostgreSQL
because of the ON CONFLICT, ON CONSTRAINT,
DO NOTHING, and DO UPDATE SET parts of the
INSERT statement.
This usage is supported identically to the nilenso library:
user=> (-> (insert-into :distributors)
(values [{:did 5 :dname "Gizmo Transglobal"}
{:did 6 :dname "Associated Computing, Inc"}])
(upsert (-> (on-conflict :did)
(do-update-set :dname)))
(returning :*)
(sql/format {:pretty true}))
["
INSERT INTO distributors (did, dname)
VALUES (?, ?), (?, ?)
ON CONFLICT (did)
DO UPDATE SET dname = EXCLUDED.dname
RETURNING *
"
5 "Gizmo Transglobal"
6 "Associated Computing, Inc"]
However, the nested upsert helper is no longer needed
(and there is no corresponding :upsert clause in the DSL):
user=> (-> (insert-into :distributors)
(values [{:did 5 :dname "Gizmo Transglobal"}
{:did 6 :dname "Associated Computing, Inc"}])
(on-conflict :did)
(do-update-set :dname)
(returning :*)
(sql/format {:pretty true}))
["
INSERT INTO distributors (did, dname)
VALUES (?, ?), (?, ?)
ON CONFLICT (did)
DO UPDATE SET dname = EXCLUDED.dname
RETURNING *
"
5 "Gizmo Transglobal"
6 "Associated Computing, Inc"]
Similarly, the do-nothing helper behaves just the same
as in the nilenso library:
user=> (-> (insert-into :distributors)
(values [{:did 7 :dname "Redline GmbH"}])
(upsert (-> (on-conflict :did)
do-nothing))
(sql/format {:pretty true}))
["
INSERT INTO distributors (did, dname)
VALUES (?, ?)
ON CONFLICT (did)
DO NOTHING
"
7 "Redline GmbH"]
As above, the nested upsert helper is no longer needed:
user=> (-> (insert-into :distributors)
(values [{:did 7 :dname "Redline GmbH"}])
(on-conflict :did)
do-nothing
(sql/format {:pretty true}))
["
INSERT INTO distributors (did, dname)
VALUES (?, ?)
ON CONFLICT (did)
DO NOTHING
"
7 "Redline GmbH"]
ON CONSTRAINT is handled slightly differently to the nilenso library,
which provided a single on-conflict-constraint helper (and clause):
user=> (-> (insert-into :distributors)
(values [{:did 9 :dname "Antwerp Design"}])
;; can specify as a nested clause...
(on-conflict (on-constraint :distributors_pkey))
do-nothing
(sql/format {:pretty true}))
["
INSERT INTO distributors (did, dname)
VALUES (?, ?)
ON CONFLICT ON CONSTRAINT distributors_pkey
DO NOTHING
"
9 "Antwerp Design"]
user=> (-> (insert-into :distributors)
(values [{:did 9 :dname "Antwerp Design"}])
;; ...or as two separate clauses
on-conflict
(on-constraint :distributors_pkey)
do-nothing
(sql/format {:pretty true}))
["
INSERT INTO distributors (did, dname)
VALUES (?, ?)
ON CONFLICT
ON CONSTRAINT distributors_pkey
DO NOTHING
"
9 "Antwerp Design"]
As above, the upsert helper has been omitted here.
An upsert with where clauses is also possible, with a more compact syntax than the nilenso library used:
user=> (-> (insert-into :user)
(values [{:phone "5555555" :name "John"}])
(on-conflict :phone (where [:<> :phone nil]))
(do-update-set :phone :name (where [:= :user.active false]))
(sql/format {:pretty true}))
["
INSERT INTO user (phone, name)
VALUES (?, ?)
ON CONFLICT (phone) WHERE phone IS NOT NULL
DO UPDATE SET phone = EXCLUDED.phone, name = EXCLUDED.name WHERE user.active = FALSE
"
"5555555" "John"]
;; using the DSL directly:
user=> (sql/format
{:insert-into :user
:values [{:phone "5555555" :name "John"}]
:on-conflict [:phone
{:where [:<> :phone nil]}]
:do-update-set {:fields [:phone :name]
:where [:= :user.active false]}}
{:pretty true})
["
INSERT INTO user (phone, name)
VALUES (?, ?)
ON CONFLICT (phone) WHERE phone IS NOT NULL
DO UPDATE SET phone = EXCLUDED.phone, name = EXCLUDED.name WHERE user.active = FALSE
"
"5555555" "John"]
By comparison, this is the DSL structure that nilenso would have required:
;; NOT VALID FOR HONEYSQL!
{:insert-into :user
:values [{:phone "5555555" :name "John"}]
;; nested under :upsert
:upsert {:on-conflict [:phone]
;; but :where is at the same level as :on-conflict
:where [:<> :phone nil]
;; this is the same as in honeysql:
:do-update-set {:fields [:phone :name]
:where [:= :user.active false]}}}
All of the examples for :do-update-set so far provide one or
more columns and generated SET clauses using EXCLUDED columns.
You can also perform regular SET operations, where the right-hand
side is a full SQL expression by specifying a hash map of column /
expression pairs, like you would for a regular :set clause:
user=> (-> (insert-into :table)
(values [{:id "id" :counter 1}])
(on-conflict :id)
(do-update-set {:counter [:+ :table.counter 1]})
(sql/format {:pretty true}))
["
INSERT INTO table (id, counter)
VALUES (?, ?)
ON CONFLICT (id)
DO UPDATE SET counter = table.counter + ?
" "id" 1 1]
;; using the DSL directly:
user=> (-> {:insert-into :table
:values [{:id "id" :counter 1}]
:on-conflict :id
:do-update-set {:counter [:+ :table.counter 1]}}
(sql/format {:pretty true}))
["
INSERT INTO table (id, counter)
VALUES (?, ?)
ON CONFLICT (id)
DO UPDATE SET counter = table.counter + ?
" "id" 1 1]
If you need to combine a DO UPDATE SET hash map expression
with a WHERE clause, you need to explicitly use the :fields /
:where format explained above. Here's how those two examples
look with a WHERE clause added:
user=> (-> (insert-into :table)
(values [{:id "id" :counter 1}])
(on-conflict :id)
(do-update-set {:fields {:counter [:+ :table.counter 1]}
:where [:> :table.counter 1]})
(sql/format {:pretty true}))
["
INSERT INTO table (id, counter)
VALUES (?, ?)
ON CONFLICT (id)
DO UPDATE SET counter = table.counter + ? WHERE table.counter > ?
" "id" 1 1 1]
;; using the DSL directly:
user=> (-> {:insert-into :table
:values [{:id "id" :counter 1}]
:on-conflict :id
:do-update-set {:fields {:counter [:+ :table.counter 1]}
:where [:> :table.counter 1]}}
(sql/format {:pretty true}))
["
INSERT INTO table (id, counter)
VALUES (?, ?)
ON CONFLICT (id)
DO UPDATE SET counter = table.counter + ? WHERE table.counter > ?
" "id" 1 1 1]
HoneySQL supports aliases directly in :insert-into so no special
clause is needed for this any more:
user=> (sql/format (-> (insert-into :table :alias)
(values [[1 2 3] [4 5 6]])))
["INSERT INTO table AS alias VALUES (?, ?, ?), (?, ?, ?)" 1 2 3 4 5 6]
user=> (sql/format {:insert-into [:table :alias],
:values [[1 2 3] [4 5 6]]})
["INSERT INTO table AS alias VALUES (?, ?, ?), (?, ?, ?)" 1 2 3 4 5 6]
The RETURNING clause is supported identically to the nilenso library:
;; via the DSL:
user=> (sql/format {:delete-from :distributors
:where [:> :did 10]
:returning [:*]})
["DELETE FROM distributors WHERE did > ? RETURNING *" 10]
;; via the helpers:
user=> (-> (update :distributors)
(set {:dname "Foo Bar Designs"})
(where [:= :did 2])
(returning :did :dname)
sql/format)
["UPDATE distributors SET dname = ? WHERE did = ? RETURNING did, dname"
"Foo Bar Designs" 2]
The following DDL statements are all supported by HoneySQL (these are mostly not PostgreSQL-specific but they were not supported by HoneySQL 1.x):
CREATE VIEWCREATE TABLEDROP TABLEALTER TABLEThese are mostly identical to what the nilenso library provides
except that sql/call is never needed -- you can use the direct
[:func ..] function call syntax instead:
;; create view:
user=> (-> (create-view :metro)
(select :*)
(from :cities)
(where [:= :metroflag "Y"])
sql/format)
["CREATE VIEW metro AS SELECT * FROM cities WHERE metroflag = ?" "Y"]
;; create table:
user=> (-> (create-table :cities)
(with-columns [[:city [:varchar 80] [:primary-key]]
[:location :point]])
sql/format)
;; values are inlined:
["CREATE TABLE cities (city VARCHAR(80) PRIMARY KEY, location POINT)"]
;; default values for columns:
user=> (-> (create-table :distributors)
(with-columns [[:did :integer [:primary-key]
;; "serial" is inlined as 'serial':
[:default [:nextval "serial"]]]
[:name [:varchar 40] [:not nil]]])
(sql/format {:pretty true}))
;; newlines inserted for readability:
["
CREATE TABLE distributors
(did INTEGER PRIMARY KEY DEFAULT NEXTVAL('serial'), name VARCHAR(40) NOT NULL)
"]
;; PostgreSQL CHECK constraint is supported:
user=> (-> (create-table :products)
(with-columns [[:product_no :integer]
[:name :text]
[:price :numeric [:check [:> :price 0]]]
[:discounted_price :numeric]
[[:check [:and [:> :discounted_price 0] [:> :price :discounted_price]]]]])
(sql/format {:pretty true}))
["
CREATE TABLE products
(product_no INTEGER, name TEXT, price NUMERIC CHECK(price > 0), discounted_price NUMERIC, CHECK((discounted_price > 0) AND (price > discounted_price)))
"]
;; conditional creation:
user=> (-> (create-table :products :if-not-exists)
(with-columns [[:name :text]])
sql/format)
["CREATE TABLE IF NOT EXISTS products (name TEXT)"]
;; drop table:
user=> (sql/format (drop-table :cities))
["DROP TABLE cities"]
;; drop multiple tables:
user=> (sql/format (drop-table :cities :towns :vilages))
["DROP TABLE cities, towns, vilages"]
;; conditional drop:
user=> (sql/format (drop-table :if-exists :cities :towns :vilages))
["DROP TABLE IF EXISTS cities, towns, vilages"]
;; alter table add column:
user=> (-> (alter-table :fruit)
(add-column :skin [:varchar 16] nil)
sql/format)
["ALTER TABLE fruit ADD COLUMN skin VARCHAR(16) NULL"]
;; alter table drop column:
user=> (-> (alter-table :fruit)
(drop-column :skin)
sql/format)
["ALTER TABLE fruit DROP COLUMN skin"]
;; alter table alter column:
user=> (-> (alter-table :fruit)
(alter-column :name [:varchar 64] [:not nil])
sql/format)
["ALTER TABLE fruit ALTER COLUMN name VARCHAR(64) NOT NULL"]
;; alter table rename column:
user=> (-> (alter-table :fruit)
(rename-column :cost :price)
sql/format)
["ALTER TABLE fruit RENAME COLUMN cost TO price"]
;; rename table:
user=> (-> (alter-table :fruit)
(rename-table :vegetable)
sql/format)
["ALTER TABLE fruit RENAME TO vegetable"]
The following PostgreSQL-specific DDL statements are supported
(with the same syntax as the nilenso library but sql/format
takes slightly different options):
;; create extension:
user=> (-> (create-extension :uuid-ossp)
(sql/format {:quoted true}))
;; quoting is required for a name containing a hyphen:
["CREATE EXTENSION \"uuid-ossp\""]
;; conditional creation:
user=> (-> (create-extension :uuid-ossp :if-not-exists)
(sql/format {:quoted true}))
["CREATE EXTENSION IF NOT EXISTS \"uuid-ossp\""]
;; drop extension:
user=> (-> (drop-extension :uuid-ossp)
(sql/format {:quoted true}))
["DROP EXTENSION \"uuid-ossp\""]
;; drop multiple extensions:
user=> (-> (drop-extension :uuid-ossp :postgis)
(sql/format {:quoted true}))
["DROP EXTENSION \"uuid-ossp\", \"postgis\""]
;; conditional drop:
user=> (-> (drop-extension :if-exists :uuid-ossp :postgis)
(sql/format {:quoted true}))
["DROP EXTENSION IF EXISTS \"uuid-ossp\", \"postgis\""]
In addition, HoneySQL supports these DDL statements that were not supported by the nilenso library:
;; alter table add index:
user=> (-> (alter-table :fruit)
(add-index :unique :fruit-name :name)
sql/format)
["ALTER TABLE fruit ADD UNIQUE fruit_name(name)"]
;; alter table drop index:
user=> (-> (alter-table :fruit)
(drop-index :fruit-name)
sql/format)
["ALTER TABLE fruit DROP INDEX fruit_name"]
;; alter table with multiple clauses:
user=> (sql/format (alter-table :fruit
(add-column :skin [:varchar 16] nil)
(add-index :unique :fruit-name :name)))
["ALTER TABLE fruit ADD COLUMN skin VARCHAR(16) NULL, ADD UNIQUE fruit_name(name)"]
honeysql-postgres added support for FILTER and WITHIN GROUP
in its 0.4.112 release. Those features have been integrated into
HoneySQL 2.x (as of 2.0.0-beta2), along with support for ORDER BY
in expressions. :filter, :within-group, and :order-by are
all available as "functions" in Special Syntax,
and there are helpers for filter and within-group.
HoneySQL supports :window, :partition-by, and :over
directly now.
See the Clause Reference for examples of WINDOW, PARTITION BY, and OVER.
Can you improve this documentation? These fine people already did:
Sean Corfield & lreadEdit on GitHub
cljdoc builds & hosts documentation for Clojure/Script libraries
| Ctrl+k | Jump to recent docs |
| ← | Move to previous article |
| → | Move to next article |
| Ctrl+/ | Jump to the search field |