Liking cljdoc? Tell your friends :D

fastmath.regression


backendclj

(backend model)

Return name of backend library

Return name of backend library
sourceraw docstring

cvclj

(cv model)
(cv model params)

Cross validation

Cross validation
sourceraw docstring

data-nativeclj

(data-native model)

Return data transformed for backend library.

Return data transformed for backend library.
sourceraw docstring

elastic-netclj

(elastic-net x y)
(elastic-net {:keys [lambda1 lambda2 tolerance max-iters]
              :or {lambda1 0.1 lambda2 0.1 tolerance 1.0E-4 max-iters 1000}}
             x
             y)

elastic-net regression. Backend library: smile

elastic-net regression. Backend library: smile
sourceraw docstring

gaussian-processclj

(gaussian-process x y)
(gaussian-process {:keys [kernel lambda]
                   :or {kernel (k/kernel :gaussian) lambda 0.5}}
                  x
                  y)

gaussian-process regression. Backend library: smile

gaussian-process regression. Backend library: smile
sourceraw docstring

gaussian-process+clj

(gaussian-process+ x y)
(gaussian-process+
  {:keys [kscale kernel noise normalize?]
   :or {kscale 1.0 kernel (k/kernel :gaussian 1.0) normalize? false}}
  xs
  y)
source

gradient-tree-boostclj

(gradient-tree-boost x y)
(gradient-tree-boost {:keys [loss number-of-trees shrinkage max-nodes subsample]
                      :or {loss :least-squares
                           number-of-trees 500
                           shrinkage 0.005
                           max-nodes 6
                           subsample 0.7}}
                     x
                     y)

gradient-tree-boost regression. Backend library: smile

gradient-tree-boost regression. Backend library: smile
sourceraw docstring

lassoclj

(lasso x y)
(lasso {:keys [lambda tolerance max-iters]
        :or {lambda 10.0 tolerance 0.001 max-iters 1000}}
       x
       y)

lasso regression. Backend library: smile

lasso regression. Backend library: smile
sourceraw docstring

loss-listclj

List of loss for Gradient Tree Boost algorithm

List of loss for Gradient Tree Boost algorithm
sourceraw docstring

model-nativeclj

(model-native model)

Return trained model as a backend class.

Return trained model as a backend class.
sourceraw docstring

neural-netclj

(neural-net x y)
(neural-net {:keys [activation-function layers learning-rate momentum
                    weight-decay number-of-epochs]
             :or {error-function :logistic-sigmoid
                  learning-rate 0.1
                  momentum 0.0
                  weight-decay 0.0
                  number-of-epochs 25}}
            x
            y)

neural-net regression. Backend library: smile

neural-net regression. Backend library: smile
sourceraw docstring

olsclj

(ols x y)
(ols {} x y)

ols regression. Backend library: smile

ols regression. Backend library: smile
sourceraw docstring

posterior-samplesclj

(posterior-samples gp vs)
(posterior-samples gp vs stddev?)

Gaussian process - draw samples from posterior for given vs

Gaussian process - draw samples from posterior for given vs
sourceraw docstring

predictclj

(predict model v)
(predict model v info?)

Predict for given vector. If info? is true returns also additional information (default false).

Predict for given vector. If `info?` is true returns also additional information (default `false`).
sourceraw docstring

predict-allclj

(predict-all model v)
(predict-all model v info?)

Predict for given sequence of vectors. If info? is true returns also additional information (default false).

Predict for given sequence of vectors. If `info?` is true returns also additional information (default `false`).
sourceraw docstring

prior-samplesclj

(prior-samples gp vs)

Gaussian process - draw samples from prior for given vs

Gaussian process - draw samples from prior for given vs
sourceraw docstring

random-forestclj

(random-forest x y)
(random-forest {:keys [number-of-trees mtry node-size max-nodes subsample]
                :or
                  {number-of-trees 500 node-size 2 max-nodes 100 subsample 1.0}}
               x
               y)

random-forest regression. Backend library: smile

random-forest regression. Backend library: smile
sourceraw docstring

rbf-networkclj

(rbf-network x y)
(rbf-network {:keys [distance rbf number-of-basis normalize?]
              :or {distance dist/euclidean number-of-basis 10 normalize? false}}
             x
             y)

rbf-network regression. Backend library: smile

rbf-network regression. Backend library: smile
sourceraw docstring

regressioncljmultimethod

source

regression-treeclj

(regression-tree x y)
(regression-tree {:keys [max-nodes node-size] :or {max-nodes 100 node-size 2}}
                 x
                 y)

regression-tree regression. Backend library: smile

regression-tree regression. Backend library: smile
sourceraw docstring

ridgeclj

(ridge x y)
(ridge {:keys [lambda] :or {lambda 0.1}} x y)

ridge regression. Backend library: smile

ridge regression. Backend library: smile
sourceraw docstring

rlsclj

(rls x y)
(rls {} x y)

rls regression. Backend library: smile

rls regression. Backend library: smile
sourceraw docstring

svrclj

(svr x y)
(svr {:keys [kernel C eps tolerance]
      :or {kernel (k/kernel :linear) C 1.0 eps 0.001 tolerance 0.001}}
     x
     y)

svr regression. Backend library: smile

svr regression. Backend library: smile
sourceraw docstring

trainclj

(train model)
(train model xs ys)

Train another set of data for given regression model or force training already given data.

Train another set of data for given regression model or force training already given data.
sourceraw docstring

validateclj

(validate model tx ty)

Validate data against trained regression.

Validate data against trained regression.
sourceraw docstring

cljdoc is a website building & hosting documentation for Clojure/Script libraries

× close