Various kernel functions.
Various kernel functions. * RBF (double -> double functions) * vector kernels (vector x vector -> double function; may be positive definite, conditional positive definite, positive semi-definite, mercer) * density estimation * some kernel operations
(approx k)
(approx k precision)
Kernel wrapper. Round value returned by kernel using fastmath.core/approx
function.
Kernel wrapper. Round value returned by kernel using [[fastmath.core/approx]] function.
(cpd->pd k)
Convert conditionally positive definite kernel into positive definite.
Formula is based on this SO answer. x0
is equals 0
.
Doesn't work well.
Convert conditionally positive definite kernel into positive definite. Formula is based on this [SO answer](https://stats.stackexchange.com/questions/149889/prove-that-a-kernel-is-conditionally-positive-definite). `x0` is equals `0`. Doesn't work well.
(exp k)
(exp k t)
Kernel wraper. exp of kernel k
with optional scaling value t
.
Kernel wraper. exp of kernel `k` with optional scaling value `t`.
(fields k f)
(fields k f1 f2)
Kernel wrapper. Apply vector field for each input before applying kernel function.
Kernel wrapper. Apply vector field for each input before applying kernel function.
Crated vector kernel.
Kernels can be Mercer, positive definite, conditional positive definite, positive semi-definite or other.
Optional parameters:
For :gaussian
, :exponential
, :laplacian
, :rational-quadratic
, :multiquadratic
, :inverse-multiquadratic
, :circular
, :spherical
, :wave
, :power
, :log
, :cauchy
, :generalized-t-student
, :hyperbolic-secant
, :thin-plate
, :mattern-12
, :mattern-32
, :mattern-52
and ::hyperbolic-secant
you can provide scaling parameter and distance
(see fastmath.distance
, default is [[euclidean]]).
Others:
:linear
- alpha
, scaling parameter:polynomial
- alpha
(scaling), c
(shift) and d
(power):anova
- sigma
(scaling), k
and d
(power):hyperbolic-tangent
- alpha
(scaling), c
(shift):periodic
- sigma
(scaling), periodicity
and distance
:bessel
- sigma
(scaling), n
and v
(power factors) and distance
:generalized-histogram
- alpha
and beta
(power factors):dirichlet
- N
:pearson
- sigma
(scaling) and omega
(power)Additionally there are two special kernels build from funcitons:
:scalar-functions
- provide one or two double->double functions:variance-function
- provide any variance function (smooth, vector->double type)The rest of the kernels do not require parameters.
Crated vector kernel. Kernels can be Mercer, positive definite, conditional positive definite, positive semi-definite or other. Optional parameters: For `:gaussian`, `:exponential`, `:laplacian`, `:rational-quadratic`, `:multiquadratic`, `:inverse-multiquadratic`, `:circular`, `:spherical`, `:wave`, `:power`, `:log`, `:cauchy`, `:generalized-t-student`, `:hyperbolic-secant`, `:thin-plate`, `:mattern-12`, `:mattern-32`, `:mattern-52` and `::hyperbolic-secant` you can provide scaling parameter and `distance` (see [[fastmath.distance]], default is [[euclidean]]). Others: * `:linear` - `alpha`, scaling parameter * `:polynomial` - `alpha` (scaling), `c` (shift) and `d` (power) * `:anova` - `sigma` (scaling), `k` and `d` (power) * `:hyperbolic-tangent` - `alpha` (scaling), `c` (shift) * `:periodic` - `sigma` (scaling), `periodicity` and `distance` * `:bessel` - `sigma` (scaling), `n` and `v` (power factors) and `distance` * `:generalized-histogram` - `alpha` and `beta` (power factors) * `:dirichlet` - `N` * `:pearson` - `sigma` (scaling) and `omega` (power) Additionally there are two special kernels build from funcitons: * `:scalar-functions` - provide one or two double->double functions * `:variance-function` - provide any variance function (smooth, vector->double type) The rest of the kernels do not require parameters.
(kernel->rbf k)
(kernel->rbf k center)
Convert vector kernel to RBF kernel. center
is fixed y
vector (default contains [[EPSILON]] values).
Convert vector kernel to RBF kernel. `center` is fixed `y` vector (default contains [[EPSILON]] values).
Create kernel density estimator.
Parameters:
kernel-density-list
.Create kernel density estimator. Parameters: * kernel name, see [[kernel-density-list]]. * sequence of data values * optional: bandwidth (by default, bandwidth is estimated using nrd method)
(kernel-density-ci method data)
(kernel-density-ci method data bandwidth)
(kernel-density-ci method data bandwidth alpha)
Create function which returns confidence intervals for given kde method.
Check 6.1.5 http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/tutorials/xlghtmlnode33.html
Parameters:
method
- kernel namedata
- sequence of data valuesbandwidth
alpha
- confidence level parameterReturns three values: density, lower confidence, upper confidence
Create function which returns confidence intervals for given kde method. Check 6.1.5 http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/tutorials/xlghtmlnode33.html Parameters: * `method` - kernel name * `data` - sequence of data values * `bandwidth` * `alpha` - confidence level parameter Returns three values: density, lower confidence, upper confidence
(mult k1)
(mult k1 k2)
(mult k1 k2 k3)
(mult k1 k2 k3 & r)
Kernel wrapper. Multiply two or more kernels.
Kernel wrapper. Multiply two or more kernels.
RBF kernel creator. RBF is double->double function.
Parameters:
All kernels accept scale
parameter (as last parameter).
Following kernels also accept beta
: :multiquadratic
, :inverse-multiquadratic
, :truncated-power
, :radial-powers
and :thin-plate
.
RBF kernel creator. RBF is double->double function. Parameters: All kernels accept `scale` parameter (as last parameter). Following kernels also accept `beta`: `:multiquadratic`, `:inverse-multiquadratic`, `:truncated-power`, `:radial-powers` and `:thin-plate`.
(rbf->kernel rbf-kernel)
(rbf->kernel rbf-kernel distance)
Treat RBF kernel as vector kernel using distance function (default [[euclidean]].
Treat RBF kernel as vector kernel using distance function (default [[euclidean]].
(scale k scale)
Kernel wrapper. Scale kernel result.
Kernel wrapper. Scale kernel result.
(smile-mercer k)
Create Smile Mercer Kernel object
Used to pass to Smile constructors/functions.
Create Smile Mercer Kernel object Used to pass to Smile constructors/functions.
(smile-rbf rbf-fn)
Create RBF Smile object.
Used to pass to Smile constructors/functions.
Create RBF Smile object. Used to pass to Smile constructors/functions.
(wadd kernels)
(wadd weights kernels)
Kernel wrapper. Add kernels (weighted).
Kernel wrapper. Add kernels (weighted).
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close