Please add your own tips and tricks! You can edit this file from Github by clicking then pencil icon in the top right of the file view.
:as
(def a_opprmdefblk [(ophirPrmDef :inBoneTrk ctidChannel #{:EArg-In})
(ophirPrmDef :inoutBoneTrk ctidChannel #{:EArg-In :EArg-Out})
(ophirPrmDef :outBoneTrk ctidChannel #{:EArg-Out})])
(m/search
a_opprmdefblk
[(m/or {:argFlags #{:EArg-Out} :as !argOut}
{:argFlags #{:EArg-In} :as !argIn})
...]
{:opmirArgIn !argIn
:opmirArgOut !argOut})
Desired Result
;EBNF
ns <= "obj" | "oppas" | "dc"
segattr <= ["/"] "@" alphanumeric
segobj <= ["/"] alphanumeric
xpath <= ns (segattr|segobj) {(segattr|segobj)}
; Input
"obj:/myobj/mychild/@myattrib"
;; Result =>
{:ns :obj,
:xsegs
({:segkind :seg-chld, :segpath ""}
{:segkind :seg-chld, :segpath "myobj"}
{:segkind :seg-chld, :segpath "mychild"}
{:segkind :seg-attr, :segpath "@myattrib"})}
What this shows:
nstoken xseg {xseg}
)nstoken =>
case "obj": :objstore
default: (keyword nstoken)
Normal Clojure
(defn initOppath-clj [axpath]
(let [nsandpath (str/split axpath #"[:]" 2)
nsstr (first nsandpath)
pathtokens (->
nsandpath
(nth 1)
(str/split #"[/]"))]
{:ns (case nsstr
"op" :op
"obj" :obj
"oppas" :oppas)
:xsegs (map
#(if (= (first %1) \@)
(->OppathSeg :seg-attr %1)
(->OppathSeg :seg-chld %1))
pathtokens)}))
Meander
Naive attempt:
(defn initOppath-m1 [axpath]
(let [axptokens (str/split axpath #"[/:]")]
{:ns (m/match (first axptokens)
(m/and ?ns (m/or "op" "obj" "oppas"))
(keyword ?ns))
:xsegs (map
#(if (= (first %1) \@)
(->OppathSeg :seg-attr %1)
(->OppathSeg :seg-chld %1))
(rest axptokens))}))
Second Attempt: Better but a nitpick is the functional transformation is on the pattern matching clause where conceptually feels like it should go in the generation part
(defn initOppath-m2 [axpath]
(m/match (str/split axpath #"[/:]")
(m/with [%segattr (m/pred #(= (first %1) \@) (m/app #(->OppathSeg :seg-attr %1) !seg))
%segobj (m/pred #(not= (first %1) \@) (m/app #(->OppathSeg :seg-chld %1) !seg))]
[(m/re #"obj|oppas|dc" ?ns)
. (m/or %segobj %segattr) ...])
{:ns (keyword ?ns) :xsegs !seg}))
Cleaner Solution Use a helper to construct the xseg:
(defn make-xseg [val]
(m/rewrite val
(m/re #"@.*" ?val)
{:kind :seg-attr :val ?val}
(m/re #"[^@].*" ?val)
{:kind :seg-chld :val ?val}
?val
{:kind :unknown :val ?val}))
(m/rewrite ["oppas" "obj1" "@attr1" "@attr2" "obj2"]
[(m/re #"obj|oppas|dc" ?ns) . !segs ...]
{:ns (m/keyword ?ns)
:xsegs [(m/app make-xseg !segs) ...]})
;; =>
{:ns :oppas,
:xsegs
[{:kind :seg-chld, :val "obj1"}
{:kind :seg-attr, :val "@attr1"}
{:kind :seg-attr, :val "@attr2"}
{:kind :seg-chld, :val "obj2"}]}
Concise Using Recursion: The second uses m/cata
on the left or right side:
Left side
(m/rewrite ["oppas" "obj1" "@attr1" "@attr2" "obj2"]
[(m/re #"obj|oppas|dc" ?ns) . (m/cata !segs) ...]
{:ns (m/keyword ?ns)
:xsegs [!segs ...]}
(m/re #"@.*" ?val)
{:kind :seg-attr :val ?val}
(m/re #"[^@].*" ?val)
{:kind :seg-chld :val ?val}
?val
{:kind :unknown :val ?val})
Right side
(m/rewrite ["oppas" "obj1" "@attr1" "@attr2" "obj2"]
[(m/re #"obj|oppas|dc" ?ns) . !segs ...]
{:ns (m/keyword ?ns)
:xsegs [(m/cata !segs) ...]}
(m/re #"@.*" ?val)
{:kind :seg-attr :val ?val}
(m/re #"[^@].*" ?val)
{:kind :seg-chld :val ?val}
?val
{:kind :unknown :val ?val})
Final Solution: Cata on the right side can be used to construct a value to be recursively rewritten. It’s the dual of the left.
(m/rewrite ["oppas" "obj1" "@attr1" "@attr2" "obj2"]
[(m/re #"obj|oppas|dc" ?ns) . !segs ...]
{:ns (m/keyword ?ns)
:xsegs [(m/cata ($EXAMPLE !segs)) ...]}
($EXAMPLE (m/re #"@.*" ?val))
{:kind :seg-attr :val ?val}
($EXAMPLE (m/re #"[^@].*" ?val))
{:kind :seg-chld :val ?val}
($EXAMPLE ?val)
{:kind :unknown :val ?val})
;; =>
{:ns :oppas,
:xsegs
[{:kind :seg-chld, :val "obj1"}
{:kind :seg-attr, :val "@attr1"}
{:kind :seg-attr, :val "@attr2"}
{:kind :seg-chld, :val "obj2"}]}
Pseudo code:
filter(
(predA? x) => (projA x) :as !projAseq
(predB? x) => (projB x) :as !projBseq
)
Clojure Code
;; Test Data
(def arglist [{:name :inBoneTrk :argFlags #{:EArg-In}}
{:name :inoutBoneTrk :argFlags #{:EArg-In :EArg-Out}}
{:name :outBoneTrk :argFlags #{:EArg-Out}}])
;; Using match
(m/match
arglist
[(m/or {:argFlags #{:EArg-Out} :as !argOut}
{:argFlags #{:EArg-In} :as !argIn})
...]
{:opmirArgIn !argIn
:opmirArgOut !argOut})
;; =>
{:opmirArgIn [{:name :inBoneTrk
:argFlags #{:EArg-In}}]
:opmirArgOut [{:name :inoutBoneTrk
:argFlags #{:EArg-Out :EArg-In}}
{:name :outBoneTrk
:argFlags #{:EArg-Out}}]}
Now let's use m/search to see the difference
(m/search
arglist
[(m/or {:argFlags #{:EArg-Out} :as !argOut}
{:argFlags #{:EArg-In} :as !argIn})
...]
{:opmirArgIn !argIn
:opmirArgOut !argOut})
;; =>
({:opmirArgIn [{:name :inBoneTrk, :argFlags #{:EArg-In}}]
:opmirArgOut [{:name :inoutBoneTrk, :argFlags #{:EArg-Out :EArg-In}}
{:name :outBoneTrk, :argFlags #{:EArg-Out}}]}
{:opmirArgIn [{:name :inBoneTrk, :argFlags #{:EArg-In}}
{:name :inoutBoneTrk, :argFlags #{:EArg-Out :EArg-In}}]
:opmirArgOut [{:name :outBoneTrk, :argFlags #{:EArg-Out}}]})
Now let's look using m/scan
(m/search
arglist
(m/scan {:argFlags #{:EArg-In} :as ?argIn})
?argIn)
;; =>
({:name :inBoneTrk
:argFlags #{:EArg-In}}
{:name :inoutBoneTrk
:argFlags #{:EArg-Out :EArg-In}})
Now let's look at m/scan with a memory variable
(m/search
arglist
(m/scan {:argFlags #{:EArg-In} :as !argIn})
!argIn)
;; =>
([{:name :inBoneTrk
:argFlags #{:EArg-In}}]
[{:name :inoutBoneTrk
:argFlags #{:EArg-Out :EArg-In}}])
token ::= (:arg-in|:arg-out) ?argname
pseudocode-result:: (str (emit-in ?arg-attr)|emit-out :arg-attr) ?argname)
(m/defsyntax ending-with [end]
['_ '... end])
(m/rewrite
[1 2 3 4 5]
(ending-with ?x)
?x)
;;=> 5
(m/rewrite
[:a :b [1 2 3]]
[:a :b (ending-with ?x)]
?x)
;;=> 3
(m/match {:pair [2 [3 [4 5]]]}
(m/with [%pair [!as (m/or %pair !bs)]]
{:pair %pair})
[!as !bs])
;; => [[2 3 4] [5]]
You can use ..!n
as a subsequence grouping facility, and with
to define a recursive pattern.
(m/rewrite [1 2 3 0 4 5 6 0 7 8 0 9]
(m/with [%split (m/or [!xs ..!n 0 & %split]
[!xs ..!n])]
%split)
[[!xs ..!n] ...])
;; => [[1 2 3] [4 5 6] [7 8] [9]]
You can use m/cata
to recursively apply the same pattern for identifying a separator and subsequent values.
Here we group odd numbers after even numbers together.
(m/rewrite [2 3 5 4 3 2]
[] [] ; The base case for no values left
[(m/pred even? ?x) . (m/pred odd? !ys) ... & ?more]
[[?x [!ys ...]] & (m/cata ?more)])
;; => [[2 [3 5]] [4 [3]] [2 []]]
(m/match {1 2 3 4 5 6}
{& (m/seqable [!ks !vs] ...)}
[!ks !vs])
;; => [[1 3 5] [2 4 6]]
Use a library like hickory
to parse the HTML into data structures, then you can match either the DOM or hiccup.
$
is a convenient way to search for matches in sub-trees.
(m/search (fetch-as-hiccup company-directory-page)
(m/$ [:div {:class "directory-tables"}
. _ ...
[:h3 _ ?department & _]])
?department)
Patterns can call themselves with the m/cata
operator.
This is like recursion.
You can leverage self recursion to accumulate a result.
(m/rewrite [() '(1 2 3)] ;; Initial state
;; Intermediate step with recursion
[?current (?head & ?tail)]
(m/cata [(?head & ?current) ?tail])
;; Done
[?current ()]
?current)
;; => (3 2 1)
When you have a match pattern that contains a memory varible !n
and a substitution pattern where you want to make use of the variable in multiple ways, you can't do that directly because [!n !n]
would take 2 different values out of !n
instead of the same value twice. However, you can easily create two names for the same value in the search pattern with (m/and !n !n2)
which will match a single value, but create 2 memory variables.
(me/rewrite [[:a 1] [:b 2] [:c 3]]
[[!k (me/and !n !n2)] ...]
[[!k !n (me/app str !n2)] ...])
;; => [[:a 1 "1"] [:b 2 "2"] [:c 3 "3"]]
You can use meander.strategy.epsilon/top-down
or bottom-up
to find and replace.
(def p
(s/top-down
(s/match
(m/pred string? ?s) (keyword ?s)
?x ?x)))
(p [1 ["a" 2] "b" 3 "c"])
;; => [1 [:a 2] :b 3 :c]
Say you want to match a number that may be followed by a string, and then a keyword:
[1 "this is fine" :foo]
[1 :foo]
Zeta will include a regex style ?
operator.
Prior to zeta there are 3 ways to handle optional values:
a) Write separate patterns:
(m/match [1 "this is fine" :foo]
[(m/pred number? ?n) (m/pred string? ?s) ?k]
"first case!"
[(m/pred number? ?n) (m/pred keyword? ?k)]
"second case!")
;; => "first case!"
b) Use recursion:
(m/match [1 "this is fine" :foo]
[(m/pred number? ?n) & (m/with [%tail [(m/pred keyword? ?k)]]
(m/or [(m/pred string? ?s) & %tail]
(m/and (m/let [?s nil])
%tail)))]
[?n ?s ?k])
;; => [1 "this is fine" :foo]
c) Constrain a memory variable to length <= 1:
(m/match [1 "this is fine" :foo]
(m/and
[(m/pred number? ?n) . (m/pred string? !s) ..?sn (m/pred keyword? ?k)]
(m/guard (<= ?sn 1)))
[?n (first !s) ?k])
;; => [1 "this is fine" :foo]
m/scan
can be used to greatly simplify clojure code unrolling relationships.
(m/search {:context-tag :one-to-five
:numbers [1 2 3 4 5]}
{:context-tag ?context
:numbers (m/scan ?n)}
[?context ?n])
; => ([:one-to-five 1]
; [:one-to-five 2]
; [:one-to-five 3]
; [:one-to-five 4]
; [:one-to-five 5])
Remember that ...
and memory variables work well together!
(m/search [{:a :whatever :b [{:n 1} {:n 2} {:n 1}]}
{:a :goes :b [{:n 1} {:n 2} {:n 4}]}
{:a :here :b [{:n 2} {:n 2} {:n 3}]}]
(m/scan {:a ?a :b [{:n !n} ...]})
{:a ?a :n !n})
;=> ({:a :whatever, :n [1 2 1]}
; {:a :goes, :n [1 2 4]}
; {:a :here, :n [2 2 3]})
This piece of code would throw a StackOverflowError
exception:
(m/match {:a 1 :b 2}
{:a ?a & (m/cata ?rest)}
{:aa ?a :rest ?rest}
{:b ?b}
{:bb ?b})
This is because when matching a logic variable to a map value, the match would succeed even if the key doesn't exist (the variable would bind to nil
). So the recursion unfolds like this:
?a
binds to 1, ?rest
binds to {:b 2}
?a
binds to nil, ?rest
binds to {:b 2}
To fix this, simply use m/some
to constrain the key :a
must exist. This is because m/some
only succeeds on a non-nil value.
(m/match {:a 1 :b 2}
{:a (m/some ?a) & (m/cata ?rest)}
{:aa ?a :rest ?rest}
{:b ?b}
{:bb ?b})
;; it works!
;; {:aa 1, :rest {:bb 2}}
Can you improve this documentation? These fine people already did:
Timothy Pratley, ikrima, J Atkin, Eric Gierach, Lucy Wang, Joel Holdbrooks & Jimmy MillerEdit on GitHub
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close