Liking cljdoc? Tell your friends :D

emmy.mechanics.hamilton


*validate-Legendre-transform?*clj/s

If true, the state passed to the fn returned by Legendre-transform is checked for correctness. If false errors may occur. See the code body for more detail.

Defaults to false.

If true, the state passed to the fn returned by [[Legendre-transform]] is
checked for correctness. If `false` errors may occur. See the code body for
more detail.

Defaults to `false`.
sourceraw docstring

->H-stateclj/s

(->H-state t q p)

Given a time t, coordinate tuple (or scalar) q and momentum tuple (or scalar) p, returns a 'Hamiltonian state tuple', i.e., the state expected by a Hamiltonian.

Given a time `t`, coordinate tuple (or scalar) `q` and momentum tuple (or
scalar) `p`, returns a 'Hamiltonian state tuple', i.e., the state expected by a
Hamiltonian.
sourceraw docstring

canonical-H?clj/s

(canonical-H? C H)
source

canonical-K?clj/s

(canonical-K? C K)
source

canonical-transform?clj/s

(canonical-transform? C)
source

canonical?clj/s

(canonical? C H Hprime)

p.324

p.324
sourceraw docstring

compatible-H-state?clj/s

(compatible-H-state? s)

Returns true if s is compatible for contraction with a proper H-state, false otherwise.

Returns true if `s` is compatible for contraction with a proper H-state, false
otherwise.
sourceraw docstring

compositional-canonical?clj/s

(compositional-canonical? C H)

p.324

p.324
sourceraw docstring

D-phase-spaceclj/s

(D-phase-space H)
source

F->CHclj/s

(F->CH F)

A transformation of configuration coordinates F to a procedure implementing a transformation of phase-space coordinates (p. 320)

A transformation of configuration coordinates F to a procedure implementing a
transformation of phase-space coordinates (p. 320)
sourceraw docstring

F->CTclj/s

Alias for F->CH.

Alias for [[F->CH]].
sourceraw docstring

F->Kclj/s

(F->K F)
source

flow-derivativeclj/s

(flow-derivative H)

the flow derivative generalizes the Lie derivative to allow for time dependent H and F --- computes the 'time' derivative of F along the flow specified by H

the flow derivative generalizes the Lie derivative to allow for time dependent
H and F --- computes the 'time' derivative of F along the flow specified by H
sourceraw docstring

flow-transformclj/s

(flow-transform H delta-t)

The generalization of Lie-transform to include time dependence.

The generalization of Lie-transform to include time dependence.
sourceraw docstring

H-centralclj/s

(H-central m V)
source

H-central-polarclj/s

(H-central-polar m V)
source

H-harmonicclj/s

(H-harmonic m k)
source

H-rectangularclj/s

(H-rectangular m V)
source

H-state->L-stateclj/s

(H-state->L-state H)
source

H-state->matrixclj/s

(H-state->matrix s)
source

H-state?clj/s

(H-state? s)

Returns true if the supplied state is

  • of type emmy.structure/up

  • contains three elements of time, coordinate and momentum of either of the following type shapes:

(up <number> <number> <number>)
(up <number> (up <number>*) (down <number>*))

If structural, the dimension of the coordinate and momentum tuples must match.

Returns true if the supplied state is

- of type [[emmy.structure/up]]

- contains three elements of `time`, `coordinate` and `momentum` of either of
  the following type shapes:

```
(up <number> <number> <number>)
(up <number> (up <number>*) (down <number>*))
```

If structural, the dimension of the coordinate and momentum tuples must match.
sourceraw docstring

Hamilton-equationsclj/s

(Hamilton-equations Hamiltonian)
source

Hamiltonianclj/s

(Hamiltonian n)

Returns function signature for a Hamiltonian with n degrees of freedom (or an unrestricted number if n is not given).

Useful for constructing Hamiltonian literal functions.

Returns function signature for a Hamiltonian with n degrees of freedom (or an
unrestricted number if n is not given).

Useful for constructing Hamiltonian literal functions.
sourceraw docstring

Hamiltonian->Lagrangianclj/s

source

Hamiltonian->state-derivativeclj/s

(Hamiltonian->state-derivative H)
source

iterated-mapclj/s

(iterated-map f n)

f is a function of (x y continue fail), which calls continue with the values of x' y' that follow x y in the mapping.

Returns a map of the same shape that iterates the iterated map n times before invoking the continuation, or invokes the fail continuation if the inner map fails.

f is a function of (x y continue fail), which calls continue with the values of
x' y' that follow x y in the mapping.

Returns a map of the same shape that iterates the iterated map n times before
invoking the continuation, or invokes the fail continuation if the inner map
fails.
sourceraw docstring

J-funcclj/s

(J-func DHs)
source

J-matrixclj/s

(J-matrix n)

n == degrees of freedom

n == degrees of freedom
sourceraw docstring

L-state->H-stateclj/s

(L-state->H-state L)
source

Lagrangian->Hamiltonianclj/s

source

Legendre-transformclj/s

source

Lie-transformclj/s

(Lie-transform H t)

p. 428, the Lie transform is just the time-advance operator using the Lie derivative (see Hamiltonian.scm).

p. 428, the Lie transform is just the time-advance operator using the Lie
derivative (see Hamiltonian.scm).
sourceraw docstring

linear-function->multiplierclj/s

(linear-function->multiplier F argument)
source

literal-Hamiltonian-stateclj/s

(literal-Hamiltonian-state n-dof)
source

make-Hamiltonianclj/s

(make-Hamiltonian kinetic-energy potential-energy)
source

matrix->H-stateclj/s

(matrix->H-state m s)
source

momentaclj/s

Alias for momentum.

Alias for [[momentum]].
sourceraw docstring

momentumclj/s

(momentum H-state)

Returns the momentum element of a local Hamiltonian state tuple (by convention, the third element).

Returns the momentum element of a local Hamiltonian state tuple (by convention,
the third element).
sourceraw docstring

multiplicative-transposeclj/s

(multiplicative-transpose s)
source

Pclj/s

Alias for momentum.

Alias for [[momentum]].
sourceraw docstring

phase-space-derivativeclj/s

Alias for Hamiltonian->state-derivative, for compatibility with 1st edition of SICM.

Alias for [[Hamiltonian->state-derivative]], for compatibility with
1st edition of SICM.
sourceraw docstring

Phiclj/s

(Phi A)
source

Phi*clj/s

(Phi* A)
source

Poisson-bracketclj/s

(Poisson-bracket f g)
source

polar-canonicalclj/s

(polar-canonical alpha)

p.327

p.327
sourceraw docstring

polar-canonical-inverseclj/s

(polar-canonical-inverse alpha)
source

qp->H-state-pathclj/s

(qp->H-state-path q p)
source

qp-canonical?clj/s

(qp-canonical? C H)

Tests that K yields a canonical transformation if the C is symplectic. (The qp-canonical? code is really a symplectic test without factoring out the Hamiltonian.)

Tests that K yields a canonical transformation if the C is symplectic. (The
qp-canonical? code is really a symplectic test without factoring out the
Hamiltonian.)
sourceraw docstring

qp-submatrixclj/s

(qp-submatrix m)
source

standard-mapclj/s

(standard-map K)
source

standard-map-inverseclj/s

(standard-map-inverse K)
source

state->pclj/s

Alias for momentum.

Alias for [[momentum]].
sourceraw docstring

state->qpclj/s

(state->qp s)

Given a hamiltonian state, returns a emmy.structure/up containing the coordinate and momentum components.

Given a hamiltonian state, returns a [[emmy.structure/up]] containing the
coordinate and momentum components. 
sourceraw docstring

symplectic-matrix?clj/s

(symplectic-matrix? M)

p. 334

p. 334
sourceraw docstring

symplectic-transform?clj/s

(symplectic-transform? C)

p. 334

p. 334
sourceraw docstring

symplectic-two-formclj/s

(symplectic-two-form zeta1 zeta2)
source

symplectic-unitclj/s

(symplectic-unit n)

p. 334 (used, but not defined there)

p. 334 (used, but not defined there)
sourceraw docstring

symplectic?clj/s

(symplectic? C)

Symplectic test in terms of matrices

Symplectic test in terms of matrices
sourceraw docstring

T-funcclj/s

(T-func s)
source

time-independent-canonical?clj/s

(time-independent-canonical? C)

p.326

p.326
sourceraw docstring

transpose-functionclj/s

(transpose-function A)
source

two-particle-center-of-massclj/s

(two-particle-center-of-mass m0 m1)
source

two-particle-center-of-mass-canonicalclj/s

(two-particle-center-of-mass-canonical m0 m1)
source

cljdoc is a website building & hosting documentation for Clojure/Script libraries

× close