(columns neanderthal-mx)
Returns the number of columns.
Returns the number of columns.
(fmap f a)
Maps a function onto a functor.
Maps a function onto a functor.
(lls a b)
Linear Linear Squares, solving for 'x', where a
× x = b
. Returns
solution.
Linear Linear Squares, solving for 'x', where `a` × x = `b`. Returns solution.
(lls! a b)
Linear Linear Squares, solving for 'x', where a
× x = b
. After
destruction, a
will contain factorization data, and b
will contain
solution. Also returns solution.
Linear Linear Squares, solving for 'x', where `a` × x = `b`. After destruction, `a` will contain factorization data, and `b` will contain solution. Also returns solution.
(lls-with-error a b)
Linear Linear Squares, solving for 'x', where a
× x = b
. Returns map
of solution, projection matrix, annihilation matrix, and the maximum
likelihood estimate for the error.
Linear Linear Squares, solving for 'x', where `a` × x = `b`. Returns map of solution, projection matrix, annihilation matrix, and the maximum likelihood estimate for the error.
(mx* neanderthal-mx1 neanderthal-mx2)
(mx* neanderthal-mx1 neanderthal-mx2 & more)
Matrix multiplication.
Matrix multiplication.
(neanderthal-columns neanderthal-mx)
Returns the columns as neanderthal vectors.
Returns the columns as neanderthal vectors.
(neanderthal-matrix->matrix neanderthal-mx)
(neanderthal-matrix->matrix neanderthal-mx take-nrows)
(neanderthal-rows neanderthal-mx)
Returns the rows as neanderthal vectors.
Returns the rows as neanderthal vectors.
(rows neanderthal-mx)
Returns the number of rows.
Returns the number of rows.
(sv-decomposition neanderthal-m)
Calculates the compact Singular Value Decomposition of a Neanderthal
matrix. The Singular Value Decomposition of neanderthal-m
is a set of three
matrices: svd-left
, singular-values
, and svd-right
such that:
neanderthal-m
= svd-left
× singular-values
× svd-right
.
Let neanderthal-m
be a m × n matrix, then svd-left
is a m × p orthogonal
matrix of the left singular vectors, singular-values
is a p × p diagonal
matrix of singular values with positive or nil elements, and are ordered from
largest to smallest. svd-right
is a p × n orthogonal matrix of the right
singular vectors where p = min(m,n). Note that:
Identity Matrix = (transpose svd-left
) × svd-left
=
svd-right
× (transpose svd-right
).
Returns a map containing:
::svd-left
-- Neanderthal matrix of left singular vectors
::singular-values
-- diagonal Neanderthal Commons matrix
::svd-right
-- transpose of Neanderthal matrix of right singular
vectors
::rank
-- rank.
Calculates the compact Singular Value Decomposition of a Neanderthal matrix. The Singular Value Decomposition of `neanderthal-m` is a set of three matrices: `svd-left`, `singular-values`, and `svd-right` such that: `neanderthal-m` = `svd-left` × `singular-values` × `svd-right`. Let `neanderthal-m` be a m × n matrix, then `svd-left` is a m × p orthogonal matrix of the left singular vectors, `singular-values` is a p × p diagonal matrix of singular values with positive or nil elements, and are ordered from largest to smallest. `svd-right` is a p × n orthogonal matrix of the right singular vectors where p = min(m,n). Note that: Identity Matrix = (transpose `svd-left`) × `svd-left` = `svd-right` × (transpose `svd-right`). Returns a map containing: `::svd-left` -- Neanderthal matrix of left singular vectors `::singular-values` -- diagonal Neanderthal Commons matrix `::svd-right` -- transpose of Neanderthal matrix of right singular vectors `::rank` -- rank.
(vector->neanderthal-matrix rows columns v by-column?)
v
is a vector of data.
`v` is a vector of data.
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close