In Getting Started, it was noted that, by default, execute!
and execute-one!
return result sets as (vectors of) hash maps with namespace-qualified keys as-is. If your database naturally produces uppercase column names from the JDBC driver, that's what you'll get. If it produces mixed-case names, that's what you'll get.
Note: Some databases do not return the table name in the metadata by default. If you run into this, you might try adding :ResultSetMetaDataOptions "1"
to your db-spec (so it is passed as a property to the JDBC driver when you create connections). If your database supports that, it will perform additional work to try to add table names to the result set metadata. It has been reported that Oracle just plain old does not support table names at all in its JDBC drivers.
The default builder for rows and result sets creates qualified keywords that match whatever case the JDBC driver produces. That builder is next.jdbc.result-set/as-maps
but there are several options available:
as-maps
-- table-qualified keywords as-is, the default, e.g., :ADDRESS/ID
, :myTable/firstName
,as-unqualified-maps
-- simple keywords as-is, e.g., :ID
, :firstName
,as-lower-maps
-- table-qualified lower-case keywords, e.g., :address/id
, :mytable/firstname
,as-unqualified-lower-maps
-- simple lower-case keywords, e.g., :id
, :firstname
,as-arrays
-- table-qualified keywords as-is (vector of column names, followed by vectors of row values),as-unqualified-arrays
-- simple keywords as-is,as-lower-arrays
-- table-qualified lower-case keywords,as-unqualified-lower-arrays
-- simple lower-case keywords.The reason behind the default is to a) be a simple transform, b) produce qualified keys in keeping with Clojure's direction (with clojure.spec
etc), and c) not mess with the data. as-arrays
is (slightly) faster than as-maps
since it produces less data (vectors of values instead of vectors of hash maps), but the lower
options will be slightly slower since they include (conditional) logic to convert strings to lower-case. The unqualified
options may be slightly faster than their qualified equivalents but make no attempt to keep column names unique if your SQL joins across multiple tables.
In addition, the following generic builders can take :label-fn
and :qualifier-fn
options to control how the label and qualified are processed. The lower
variants above are implemented in terms of these, passing a lower-case
function for both of those options.
as-modified-maps
-- table-qualified keywords,as-unqualified-modified-maps
-- simple keywords,as-modified-arrays
-- table-qualified keywords,as-unqualified-modified-arrays
-- simple keywords.An example builder that converts snake_case
database table/column names to kebab-case
keywords:
(defn as-kebab-maps [rs opts]
(let [kebab #(str/replace % #"_" "-")]
(result-set/as-modified-maps rs (assoc opts :qualifier-fn kebab :label-fn kebab))))
And finally there are adapters for the existing builders that let you override the default way that columns are read from result sets:
as-maps-adapter
-- adapts an existing map builder function with a new column reader,as-arrays-adapter
-- adapts an existing array builder function with a new column reader.This protocol defines four functions and is used whenever next.jdbc
needs to materialize a row from a ResultSet
as a Clojure data structure:
(->row builder)
-- produces a new row (a (transient {})
by default),(column-count builder)
-- returns the number of columns in each row,(with-column builder row i)
-- given the row so far, fetches column i
from the current row of the ResultSet
, converts it to a Clojure value, and adds it to the row (for as-maps
this is a call to .getObject
, a call to read-column-by-index
-- see the ReadableColumn
protocol below, and a call to assoc!
),(row! builder row)
-- completes the row (a (persistent! row)
call by default).execute!
and execute-one!
call these functions for each row they need to build. plan
may call these functions if the reducing function causes a row to be materialized.
This protocol defines three functions and is used whenever next.jdbc
needs to materialize a result set (multiple rows) from a ResultSet
as a Clojure data structure:
(->rs builder)
-- produces a new result set (a (transient [])
by default),(with-row builder rs row)
-- given the result set so far and a new row, returns the updated result set (a (conj! rs row)
call by default),(rs! builder rs)
-- completes the result set (a (persistent! rs)
call by default).Only execute!
expects this protocol to be implemented. execute-one!
and plan
do not call these functions.
The as-*
functions described above are all implemented in terms of these protocols. They are passed the ResultSet
object and the options hash map (as passed into various next.jdbc
functions). They return an implementation of the protocols that is then used to build rows and the result set. Note that the ResultSet
passed in is mutable and is advanced from row to row by the SQL execution function, so each time ->row
is called, the underlying ResultSet
object points at each new row in turn. By contrast, ->rs
(which is only called by execute!
) is invoked before the ResultSet
is advanced to the first row.
The options hash map for any next.jdbc
function can contain a :builder-fn
key and the value is used as the row/result set builder function. The tests for next.jdbc.result-set
include a record-based builder function as an example of how you can extend this to satisfy your needs.
Note: When next.jdbc
cannot obtain a ResultSet
object and returns {:next.jdbc/count N}
instead, the builder function is not applied -- the :builder-fn
option does not affect the shape of the result.
The options hash map passed to the builder function will contain a :next.jdbc/sql-params
key, whose value is the SQL + parameters vector passed into the top-level next.jdbc
functions (plan
, execute!
, and execute-one!
).
There is also a convenience function, datafiable-result-set
, that accepts a ResultSet
object (and a connectable and an options hash map) and returns a fully realized result set, per the :builder-fn
option (or as-maps
if that option is omitted).
next.jdbc.optional
This namespace contains variants of the six as-maps
-style builders above that omit keys from the row hash maps if the corresponding column is NULL
. This is in keeping with Clojure's views of "optionality" -- that optional elements should simply be omitted -- and is provided as an "opt-in" style of rows and result sets.
As mentioned above, when with-column
is called, the expectation is that the row builder will call .getObject
on the current state of the ResultSet
object with the column index and will then call read-column-by-index
, passing the column value, the ResultSetMetaData
, and the column index. That function is part of the ReadableColumn
protocol that you can extend to handle conversion of arbitrary database-specific types to Clojure values.
If you need more control over how values are read from the ResultSet
object, you can use next.jdbc.result-set/as-maps-adapter
(or next.jdbc.result-set/as-arrays-adapter
) which takes an existing builder function and a column reading function and returns a new builder function that calls your column reading function (with the ResultSet
object, the ResultSetMetaData
object, and the column index) instead of calling .getObject
directly.
Note that the adapters still call read-column-by-index
on the value your column reading function returns.
In addition, inside plan
, as each value is looked up by name in the current state of the ResultSet
object, the read-column-by-label
function is called, again passing the column value and the column label (the name used in the SQL to identify that column). This function is also part of the ReadableColumn
protocol.
The default implementation of this protocol is for these two functions to return nil
as nil
, a Boolean
value as a canonical true
or false
value (unfortunately, JDBC drivers cannot be relied on to return unique values here!), and for all other objects to be returned as-is.
next.jdbc
makes no assumptions beyond nil
and Boolean
, but common extensions here could include converting java.sql.Date
to java.time.LocalDate
and java.sql.Timestamp
to java.time.Instant
for example:
(extend-protocol rs/ReadableColumn
java.sql.Date
(read-column-by-label ^java.time.LocalDate [^java.sql.Date v _]
(.toLocalDate v))
(read-column-by-index ^java.time.LocalDate [^java.sql.Date v _2 _3]
(.toLocalDate v))
java.sql.Timestamp
(read-column-by-label ^java.time.Instant [^java.sql.Timestamp v _]
(.toInstant v))
(read-column-by-index ^java.time.Instant [^java.sql.Timestamp v _2 _3]
(.toInstant v)))
Remember that a protocol extension will apply to all code running in your application so with the above code all timestamp values coming from the database will be converted to java.time.Instant
for all queries. If you want to control behavior across different calls, consider the adapters described above (as-maps-adapter
and as-arrays-adapter
).
Note that the converse, converting Clojure values to database-specific types is handled by the SettableParameter
protocol, discussed in the next section (Prepared Statements).
Can you improve this documentation?Edit on GitHub
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close