Basic machine learning library for use with tech.v3.dataset
.
We start out a require:
user> (require '[tech.v3.dataset :as ds])
And move to a dataset. We will use the famous Iris dataset:
user> (def ds (ds/->dataset "https://raw.githubusercontent.com/techascent/tech.ml/master/test/data/iris.csv"))
#'user/ds
user> (ds/head ds)
https://raw.githubusercontent.com/techascent/tech.ml/master/test/data/iris.csv [5 5]:
| sepal_length | sepal_width | petal_length | petal_width | species |
|--------------|-------------|--------------|-------------|---------|
| 5.1 | 3.5 | 1.4 | 0.2 | setosa |
| 4.9 | 3.0 | 1.4 | 0.2 | setosa |
| 4.7 | 3.2 | 1.3 | 0.2 | setosa |
| 4.6 | 3.1 | 1.5 | 0.2 | setosa |
| 5.0 | 3.6 | 1.4 | 0.2 | setosa |
We need to have all numeric columns in our dataset. The species column is a categorical column and we will need to convert it to a numeric column while remembering what mapping we used. We introduce the column filters namespace that performs various filtering operations on the columns themselves returning new datasets:
user> (require '[tech.v3.dataset.column-filters :as cf])
nil
user> (ds/head (cf/numeric ds))
https://raw.githubusercontent.com/techascent/tech.ml/master/test/data/iris.csv [5 4]:
| sepal_length | sepal_width | petal_length | petal_width |
|--------------|-------------|--------------|-------------|
| 5.1 | 3.5 | 1.4 | 0.2 |
| 4.9 | 3.0 | 1.4 | 0.2 |
| 4.7 | 3.2 | 1.3 | 0.2 |
| 4.6 | 3.1 | 1.5 | 0.2 |
| 5.0 | 3.6 | 1.4 | 0.2 |
user> (ds/head (cf/categorical ds))
https://raw.githubusercontent.com/techascent/tech.ml/master/test/data/iris.csv [5 1]:
| species |
|---------|
| setosa |
| setosa |
| setosa |
| setosa |
| setosa |
user> (def numeric-ds (ds/categorical->number ds cf/categorical))
#'user/numeric-ds
user> (ds/head numeric-ds)
https://raw.githubusercontent.com/techascent/tech.ml/master/test/data/iris.csv [5 5]:
| sepal_length | sepal_width | petal_length | petal_width | species |
|--------------|-------------|--------------|-------------|---------|
| 5.1 | 3.5 | 1.4 | 0.2 | 1.0 |
| 4.9 | 3.0 | 1.4 | 0.2 | 1.0 |
| 4.7 | 3.2 | 1.3 | 0.2 | 1.0 |
| 4.6 | 3.1 | 1.5 | 0.2 | 1.0 |
| 5.0 | 3.6 | 1.4 | 0.2 | 1.0 |
user> (meta (numeric-ds "species"))
{:categorical? true,
:name "species",
:datatype :float64,
:n-elems 150,
:categorical-map
{:lookup-table {"versicolor" 0, "setosa" 1, "virginica" 2},
:src-column "species",
:result-datatype :float64}}
;;More transforms like this including one-hot and inverting the mapping are
;;available in tech.v3.dataset.categorical.
For regression we will mark the petal_width
as the field we want to infer on and
use the default xgboost regression model. Moving into actual modelling, we will
including the tech.v3.dataset.modelling
namespace and the xgboost bindings.
We will use a method were we split the dataset into train/test datasets
via random sampling, train the model, and calculate the loss using the
test-ds and the default regression loss function - mean average error or
mae
:
user> (require '[tech.v3.dataset.modelling :as ds-mod])
nil
user> (def regression-ds (ds-mod/set-inference-target numeric-ds "petal_width"))
#'user/regression-ds
user> (require '[tech.v3.libs.xgboost])
nil
;; Also tech.v3.libs.smile.regression and tech.v3.libs.smile.classification provide quite
;; a few models.
user> (require '[tech.v3.ml :as ml])
nil
user> (def model (ml/train-split regression-ds {:model-type :xgboost/regression}))
#'user/model
user> (:loss model)
0.1272654171784719
We split the dataset into k datasets via the k-fold algorithm and get more error information:
user> (def k-fold-model (ml/train-k-fold regression-ds {:model-type :xgboost/regression}))
#'user/k-fold-model
user> (select-keys k-fold-model [:min-loss :avg-loss :max-loss])
{:min-loss 0.1050250555238416,
:avg-loss 0.1569393319631037,
:max-loss 0.19597491553196542}
Given a model we can predict what the answer will be for the column the model was trained for:
user> (ds/head (ml/predict regression-ds k-fold-model))
:_unnamed [5 1]:
| petal_width |
|-------------|
| 0.2615 |
| 0.1569 |
| 0.1862 |
| 0.1780 |
| 0.2410 |
And thus calculating our own loss is easy:
user> (require '[tech.v3.ml.loss :as loss])
nil
user> (def predictions (ml/predict regression-ds k-fold-model))
#'user/predictions
user> (loss/mae (predictions "petal_width")
(regression-ds "petal_width"))
0.04563391995429992
The loss in this case is artificially low because we are testing on the same data that we trained on.
For classification will we attempt to predict the species.
user> (def classification-ds (ds-mod/set-inference-target numeric-ds "species"))
#'user/classification-ds
user> (def k-fold-model (ml/train-k-fold classification-ds {:model-type :xgboost/classification}))
#'user/k-fold-model
user> (select-keys k-fold-model [:min-loss :avg-loss :max-loss])
{:min-loss 0.0, :avg-loss 0.04516129032258065, :max-loss 0.09677419354838712}
The XGBoost system has a powerful classification engine!
We can ask the model which columns it found the most useful:
user> (ml/explain k-fold-model)
_unnamed [4 3]:
| :importance-type | :colname | :gain |
|------------------|--------------|------------|
| gain | petal_length | 3.38923719 |
| gain | petal_width | 2.50506807 |
| gain | sepal_length | 0.22811251 |
| gain | sepal_width | 0.22783045 |
When we predict a classification dataset we get back a probability distribution along with the original column mapped to whatever index had the max probability:
user> (ds/head (ml/predict classification-ds k-fold-model))
:_unnamed [5 4]:
| versicolor | setosa | virginica | species |
|------------|--------|-----------|---------|
| 0.006784 | 0.9902 | 0.003023 | 1.0 |
| 0.006032 | 0.9900 | 0.003945 | 1.0 |
| 0.006348 | 0.9906 | 0.003025 | 1.0 |
| 0.006348 | 0.9906 | 0.003031 | 1.0 |
| 0.006348 | 0.9906 | 0.003025 | 1.0 |
;;The columns are marked with their type:
user> (map meta (vals *1))
({:name "versicolor",
:datatype :object,
:n-elems 5,
:column-type :probability-distribution}
{:name "setosa",
:datatype :object,
:n-elems 5,
:column-type :probability-distribution}
{:name "virginica",
:datatype :object,
:n-elems 5,
:column-type :probability-distribution}
{:categorical? true,
:categorical-map
{:lookup-table {"versicolor" 0, "setosa" 1, "virginica" 2},
:src-column "species",
:result-datatype :float64},
:name "species",
:datatype :float64,
:n-elems 5,
:column-type :prediction})
Due to the metadata saved on the species
column we can reverse map back to the
original column values using the tech.v3.dataset.categorical
namespace:
user> (require '[tech.v3.dataset.categorical :as ds-cat])
nil
user> (def predictions (ml/predict classification-ds k-fold-model))
#'user/predictions
user> (ds/head (ds-cat/reverse-map-categorical-xforms predictions))
:_unnamed [5 4]:
| versicolor | setosa | virginica | species |
|------------|--------|-----------|---------|
| 0.006784 | 0.9902 | 0.003023 | setosa |
| 0.006032 | 0.9900 | 0.003945 | setosa |
| 0.006348 | 0.9906 | 0.003025 | setosa |
| 0.006348 | 0.9906 | 0.003031 | setosa |
| 0.006348 | 0.9906 | 0.003025 | setosa |
We have generic support for xgboost and smile. This gives you quite a few models and they are all gridsearcheable. We put this forward in an attempt to simplify doing ML that we do and in an attempt to move the Clojure ML conversation forward towards getting the best possible results for a dataset in the least amount of (developer) time.
Copyright © 2019 Tech Ascent, LLC
Distributed under the Eclipse Public License either version 1.0 or (at your option) any later version.
Can you improve this documentation?Edit on GitHub
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close