(add a__1758__auto__ b__1759__auto__)
(add a__1758__auto__ b__1759__auto__ c__1760__auto__)
(add a__1758__auto__ b__1759__auto__ c__1760__auto__ d__1761__auto__)
(add a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__)
(add a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__)
(add a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__
g__1764__auto__)
(add a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__
g__1764__auto__
h__1765__auto__)
(adddiv a__1771__auto__ b__1772__auto__ c__1773__auto__)
(adddiv a__1771__auto__ b__1772__auto__ c__1773__auto__ d__1774__auto__)
(adddiv a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__)
(adddiv a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__)
(adddiv a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__)
(adddiv a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__
h__1778__auto__)
(addm a__1771__auto__ b__1772__auto__ c__1773__auto__)
(addm a__1771__auto__ b__1772__auto__ c__1773__auto__ d__1774__auto__)
(addm a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__)
(addm a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__)
(addm a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__)
(addm a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__
h__1778__auto__)
(addmsub a__1784__auto__ b__1785__auto__ c__1786__auto__ d__1787__auto__)
(addmsub a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__)
(addmsub a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__)
(addmsub a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__
g__1790__auto__)
(addmsub a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__
g__1790__auto__
h__1791__auto__)
(bitmask pred a)
(bitmask pred a b)
(bitmask pred a b c)
(bitmask pred a b c d)
(bitmask pred a b c d e)
(bitmask pred a b c d e f)
(bitmask pred a b c d e f g)
(bitmask pred a b c d e f g h)
Constructs a bit mask from given values & predicate fn applied to each. If pred returns truthy value the value's related bit is set. Bit values start at 1 and double for successive args (max 8).
Constructs a bit mask from given values & predicate fn applied to each. If pred returns truthy value the value's related bit is set. Bit values start at 1 and double for successive args (max 8).
(defmathop name f)
Constructs macro to build inlined nested expressions which when call will apply f successively to all args. Supports arities 2-8.
Constructs macro to build inlined nested expressions which when call will apply f successively to all args. Supports arities 2-8.
(defmathop2 name f f2)
Constructs macro to build inlined nested expressions which when call will apply f to inner pairs and f2 to combine results.
Constructs macro to build inlined nested expressions which when call will apply f to inner pairs and f2 to combine results.
(defmathop3 name f f2 f3)
Takes f, f2 & f3 as syntax-quoted symbols. Constructs a macro which when called, applies f to all but the last 1 or 2 args. The remaining arg(s) are combined with the first result using f2. Furthermore, for arities 6 and 8, f3 is first applied to the last two args are before the final application of f2. For example:
(defmathop* maddsub `madd `- `*)
(maddsub 2 3 4 5) => (- (madd 2 3 4) 5)
(maddsub 2 3 4 5 6) => (- (madd 2 3 4) (* 5 6))
Takes f, f2 & f3 as syntax-quoted symbols. Constructs a macro which when called, applies f to all but the last 1 or 2 args. The remaining arg(s) are combined with the first result using f2. Furthermore, for arities 6 and 8, f3 is first applied to the last two args are before the final application of f2. For example: (defmathop* maddsub `madd `- `*) (maddsub 2 3 4 5) => (- (madd 2 3 4) 5) (maddsub 2 3 4 5 6) => (- (madd 2 3 4) (* 5 6))
(div a__1758__auto__ b__1759__auto__)
(div a__1758__auto__ b__1759__auto__ c__1760__auto__)
(div a__1758__auto__ b__1759__auto__ c__1760__auto__ d__1761__auto__)
(div a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__)
(div a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__)
(div a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__
g__1764__auto__)
(div a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__
g__1764__auto__
h__1765__auto__)
(if* pred x y)
Returns y if x pred returns truthy, else 0
Returns y if x pred returns truthy, else 0
(madd a__1771__auto__ b__1772__auto__ c__1773__auto__)
(madd a__1771__auto__ b__1772__auto__ c__1773__auto__ d__1774__auto__)
(madd a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__)
(madd a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__)
(madd a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__)
(madd a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__
h__1778__auto__)
(maddsub a__1784__auto__ b__1785__auto__ c__1786__auto__ d__1787__auto__)
(maddsub a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__)
(maddsub a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__)
(maddsub a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__
g__1790__auto__)
(maddsub a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__
g__1790__auto__
h__1791__auto__)
(max a b)
(max a b c)
(max a b c d)
(max a b c d e)
(max a b c d e f)
(max a b c d e f g)
(max a b c d e f g h)
(min a b)
(min a b c)
(min a b c d)
(min a b c d e)
(min a b c d e f)
(min a b c d e f g)
(min a b c d e f g h)
(mix a b t)
(mix a b c d u v)
(mix a b c d e f g h u v w)
Linear, bi-linear & tri-linear interpolation
Linear, bi-linear & tri-linear interpolation
(msub a__1771__auto__ b__1772__auto__ c__1773__auto__)
(msub a__1771__auto__ b__1772__auto__ c__1773__auto__ d__1774__auto__)
(msub a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__)
(msub a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__)
(msub a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__)
(msub a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__
h__1778__auto__)
(msubadd a__1784__auto__ b__1785__auto__ c__1786__auto__ d__1787__auto__)
(msubadd a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__)
(msubadd a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__)
(msubadd a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__
g__1790__auto__)
(msubadd a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__
g__1790__auto__
h__1791__auto__)
(mul a__1758__auto__ b__1759__auto__)
(mul a__1758__auto__ b__1759__auto__ c__1760__auto__)
(mul a__1758__auto__ b__1759__auto__ c__1760__auto__ d__1761__auto__)
(mul a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__)
(mul a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__)
(mul a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__
g__1764__auto__)
(mul a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__
g__1764__auto__
h__1765__auto__)
(sub a__1758__auto__ b__1759__auto__)
(sub a__1758__auto__ b__1759__auto__ c__1760__auto__)
(sub a__1758__auto__ b__1759__auto__ c__1760__auto__ d__1761__auto__)
(sub a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__)
(sub a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__)
(sub a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__
g__1764__auto__)
(sub a__1758__auto__
b__1759__auto__
c__1760__auto__
d__1761__auto__
e__1762__auto__
f__1763__auto__
g__1764__auto__
h__1765__auto__)
(subdiv a__1771__auto__ b__1772__auto__ c__1773__auto__)
(subdiv a__1771__auto__ b__1772__auto__ c__1773__auto__ d__1774__auto__)
(subdiv a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__)
(subdiv a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__)
(subdiv a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__)
(subdiv a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__
h__1778__auto__)
(subm a__1771__auto__ b__1772__auto__ c__1773__auto__)
(subm a__1771__auto__ b__1772__auto__ c__1773__auto__ d__1774__auto__)
(subm a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__)
(subm a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__)
(subm a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__)
(subm a__1771__auto__
b__1772__auto__
c__1773__auto__
d__1774__auto__
e__1775__auto__
f__1776__auto__
g__1777__auto__
h__1778__auto__)
(submadd a__1784__auto__ b__1785__auto__ c__1786__auto__ d__1787__auto__)
(submadd a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__)
(submadd a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__)
(submadd a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__
g__1790__auto__)
(submadd a__1784__auto__
b__1785__auto__
c__1786__auto__
d__1787__auto__
e__1788__auto__
f__1789__auto__
g__1790__auto__
h__1791__auto__)
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close