Liking cljdoc? Tell your friends :D

jdk.util.concurrent.RecursiveAction

A recursive resultless ForkJoinTask. This class establishes conventions to parameterize resultless actions as Void ForkJoinTasks. Because null is the only valid value of type Void, methods such as join always return null upon completion.

Sample Usages. Here is a simple but complete ForkJoin sort that sorts a given long[] array:

static class SortTask extends RecursiveAction { final long[] array; final int lo, hi; SortTask(long[] array, int lo, int hi) { this.array = array; this.lo = lo; this.hi = hi; } SortTask(long[] array) { this(array, 0, array.length); } protected void compute() { if (hi - lo < THRESHOLD) sortSequentially(lo, hi); else { int mid = (lo hi) >>> 1; invokeAll(new SortTask(array, lo, mid), new SortTask(array, mid, hi)); merge(lo, mid, hi); } } // implementation details follow: static final int THRESHOLD = 1000; void sortSequentially(int lo, int hi) { Arrays.sort(array, lo, hi); } void merge(int lo, int mid, int hi) { long[] buf = Arrays.copyOfRange(array, lo, mid); for (int i = 0, j = lo, k = mid; i < buf.length; j++) array[j] = (k == hi || buf[i] < array[k]) ? buf[i++] : array[k++]; } }

You could then sort anArray by creating new SortTask(anArray) and invoking it in a ForkJoinPool. As a more concrete simple example, the following task increments each element of an array:

class IncrementTask extends RecursiveAction { final long[] array; final int lo, hi; IncrementTask(long[] array, int lo, int hi) { this.array = array; this.lo = lo; this.hi = hi; } protected void compute() { if (hi - lo < THRESHOLD) { for (int i = lo; i < hi; +i) array[i]++; } else { int mid = (lo hi) >>> 1; invokeAll(new IncrementTask(array, lo, mid), new IncrementTask(array, mid, hi)); } } }

The following example illustrates some refinements and idioms that may lead to better performance: RecursiveActions need not be fully recursive, so long as they maintain the basic divide-and-conquer approach. Here is a class that sums the squares of each element of a double array, by subdividing out only the right-hand-sides of repeated divisions by two, and keeping track of them with a chain of next references. It uses a dynamic threshold based on method getSurplusQueuedTaskCount, but counterbalances potential excess partitioning by directly performing leaf actions on unstolen tasks rather than further subdividing.

double sumOfSquares(ForkJoinPool pool, double[] array) { int n = array.length; Applyer a = new Applyer(array, 0, n, null); pool.invoke(a); return a.result; }

class Applyer extends RecursiveAction { final double[] array; final int lo, hi; double result; Applyer next; // keeps track of right-hand-side tasks Applyer(double[] array, int lo, int hi, Applyer next) { this.array = array; this.lo = lo; this.hi = hi; this.next = next; }

double atLeaf(int l, int h) { double sum = 0; for (int i = l; i < h; +i) // perform leftmost base step sum = array[i] * array[i]; return sum; }

protected void compute() { int l = lo; int h = hi; Applyer right = null; while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) { int mid = (l h) >>> 1; right = new Applyer(array, mid, h, right); right.fork(); h = mid; } double sum = atLeaf(l, h); while (right != null) { if (right.tryUnfork()) // directly calculate if not stolen sum = right.atLeaf(right.lo, right.hi); else { right.join(); sum = right.result; } right = right.next; } result = sum; } }

A recursive resultless ForkJoinTask.  This class
establishes conventions to parameterize resultless actions as
Void ForkJoinTasks. Because null is the
only valid value of type Void, methods such as join
always return null upon completion.

Sample Usages. Here is a simple but complete ForkJoin
sort that sorts a given long[] array:



static class SortTask extends RecursiveAction {
  final long[] array; final int lo, hi;
  SortTask(long[] array, int lo, int hi) {
    this.array = array; this.lo = lo; this.hi = hi;
  }
  SortTask(long[] array) { this(array, 0, array.length); }
  protected void compute() {
    if (hi - lo < THRESHOLD)
      sortSequentially(lo, hi);
    else {
      int mid = (lo  hi) >>> 1;
      invokeAll(new SortTask(array, lo, mid),
                new SortTask(array, mid, hi));
      merge(lo, mid, hi);
    }
  }
  // implementation details follow:
  static final int THRESHOLD = 1000;
  void sortSequentially(int lo, int hi) {
    Arrays.sort(array, lo, hi);
  }
  void merge(int lo, int mid, int hi) {
    long[] buf = Arrays.copyOfRange(array, lo, mid);
    for (int i = 0, j = lo, k = mid; i < buf.length; j++)
      array[j] = (k == hi || buf[i] < array[k]) ?
        buf[i++] : array[k++];
  }
}

You could then sort anArray by creating new
SortTask(anArray) and invoking it in a ForkJoinPool.  As a more
concrete simple example, the following task increments each element
of an array:


class IncrementTask extends RecursiveAction {
  final long[] array; final int lo, hi;
  IncrementTask(long[] array, int lo, int hi) {
    this.array = array; this.lo = lo; this.hi = hi;
  }
  protected void compute() {
    if (hi - lo < THRESHOLD) {
      for (int i = lo; i < hi; +i)
        array[i]++;
    }
    else {
      int mid = (lo  hi) >>> 1;
      invokeAll(new IncrementTask(array, lo, mid),
                new IncrementTask(array, mid, hi));
    }
  }
}

The following example illustrates some refinements and idioms
that may lead to better performance: RecursiveActions need not be
fully recursive, so long as they maintain the basic
divide-and-conquer approach. Here is a class that sums the squares
of each element of a double array, by subdividing out only the
right-hand-sides of repeated divisions by two, and keeping track of
them with a chain of next references. It uses a dynamic
threshold based on method getSurplusQueuedTaskCount, but
counterbalances potential excess partitioning by directly
performing leaf actions on unstolen tasks rather than further
subdividing.



double sumOfSquares(ForkJoinPool pool, double[] array) {
  int n = array.length;
  Applyer a = new Applyer(array, 0, n, null);
  pool.invoke(a);
  return a.result;
}

class Applyer extends RecursiveAction {
  final double[] array;
  final int lo, hi;
  double result;
  Applyer next; // keeps track of right-hand-side tasks
  Applyer(double[] array, int lo, int hi, Applyer next) {
    this.array = array; this.lo = lo; this.hi = hi;
    this.next = next;
  }

  double atLeaf(int l, int h) {
    double sum = 0;
    for (int i = l; i < h; +i) // perform leftmost base step
      sum = array[i] * array[i];
    return sum;
  }

  protected void compute() {
    int l = lo;
    int h = hi;
    Applyer right = null;
    while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) {
      int mid = (l  h) >>> 1;
      right = new Applyer(array, mid, h, right);
      right.fork();
      h = mid;
    }
    double sum = atLeaf(l, h);
    while (right != null) {
      if (right.tryUnfork()) // directly calculate if not stolen
        sum = right.atLeaf(right.lo, right.hi);
      else {
        right.join();
        sum = right.result;
      }
      right = right.next;
    }
    result = sum;
  }
}
raw docstring

->recursive-actionclj

(->recursive-action)

Constructor.

Constructor.
raw docstring

get-raw-resultclj

(get-raw-result this)

Always returns null.

returns: null always - java.lang.Void

Always returns null.

returns: null always - `java.lang.Void`
raw docstring

cljdoc is a website building & hosting documentation for Clojure/Script libraries

× close