Liking cljdoc? Tell your friends :D

## kixi.stats.distribution

#### bernoulliclj/s

``(bernoulli p)``

Returns a Bernoulli distribution. Params: p ∈ [0 1]

```Returns a Bernoulli distribution.
Params: p ∈ [0 1]```
sourceraw docstring

#### betaclj/s

``(beta {:keys [alpha beta] :or {alpha 1.0 beta 1.0}})``

Returns a beta distribution. Params: {:alpha ∈ ℝ, :beta ∈ ℝ}

```Returns a beta distribution.
Params: {:alpha ∈ ℝ, :beta ∈ ℝ}```
sourceraw docstring

#### beta-binomialclj/s

``(beta-binomial n {:keys [alpha beta] :or {alpha 1.0 beta 1.0}})``

Returns a beta distribution. Params: n ∈ ℕ, {:alpha ∈ ℝ, :beta ∈ ℝ}

```Returns a beta distribution.
Params: n ∈ ℕ, {:alpha ∈ ℝ, :beta ∈ ℝ}```
sourceraw docstring

#### binomialclj/s

``(binomial {:keys [n p]})``

Return a binomial distribution. Params: {:n ∈ ℕ, :p ∈ [0 1]}

```Return a binomial distribution.
Params: {:n ∈ ℕ, :p ∈ [0 1]}```
sourceraw docstring

#### categoricalclj/s

``(categorical ks ps)``

Returns a categorical distribution. Params: [k1, ..., kn], [p1, ..., pn] where k1...kn are the categories and p1...pn are probabilities. Probabilities should be >= 0 and sum to 1

```Returns a categorical distribution.
Params: [k1, ..., kn], [p1, ..., pn]
where k1...kn are the categories
and p1...pn are probabilities.
Probabilities should be >= 0 and sum to 1```
sourceraw docstring

source

#### chi-squaredclj/s

``(chi-squared k)``

Returns a chi-squared distribution. Params: k ∈ ℕ > 0

```Returns a chi-squared distribution.
Params: k ∈ ℕ > 0```
sourceraw docstring

#### critical-valueclj/s

``(critical-value distribution)``
``(critical-value distribution alpha)``
``(critical-value distribution alpha tails)``
source

#### dirichletclj/s

``(dirichlet as)``

Returns a Dirichlet distribution. Params: [a1...an] ∈ ℝ >= 0

```Returns a Dirichlet distribution.
Params: [a1...an] ∈ ℝ >= 0```
sourceraw docstring

#### dirichlet-multinomialclj/s

``(dirichlet-multinomial n as)``

Returns a Dirichlet-multinomial distribution. Params: n ∈ ℕ, [a1...an] ∈ ℝ >= 0

```Returns a Dirichlet-multinomial distribution.
Params: n ∈ ℕ, [a1...an] ∈ ℝ >= 0```
sourceraw docstring

#### drawclj/s

``(draw distribution)``
``(draw distribution {:keys [seed]})``

Returns a single variate from the distribution. An optional seed long will ensure deterministic results

```Returns a single variate from the distribution.
An optional seed long will ensure deterministic results```
sourceraw docstring

#### exponentialclj/s

``(exponential rate)``

Returns an exponential distribution. Params: rate ∈ ℝ > 0

```Returns an exponential distribution.
Params: rate ∈ ℝ > 0```
sourceraw docstring

#### fclj/s

``(f d1 d2)``

Returns an F distribution. Params: d1 ∈ ℕ > 0, d2 ∈ ℕ > 0

```Returns an F distribution.
Params: d1 ∈ ℕ > 0, d2 ∈ ℕ > 0```
sourceraw docstring

#### gammaclj/s

``(gamma {:keys [shape scale] :or {shape 1.0 scale 1.0}})``

Returns a gamma distribution. Params: {:shape ∈ ℝ, :scale ∈ ℝ}

```Returns a gamma distribution.
Params: {:shape ∈ ℝ, :scale ∈ ℝ}```
sourceraw docstring

#### iqrclj/s

``(iqr distribution)``

Returns the interquartile range

```Returns the interquartile range
```
sourceraw docstring

source

#### medianclj/s

``(median distribution)``

Returns the median

```Returns the median
```
sourceraw docstring

source

#### multinomialclj/s

``(multinomial n ps)``

Returns a multinomial distribution. Params: n ∈ ℕ > 0, [p1, ..., pn] where p1...pn are probabilities. Probabilities should be >= 0 and sum to 1

```Returns a multinomial distribution.
Params: n ∈ ℕ > 0, [p1, ..., pn]
where p1...pn are probabilities.
Probabilities should be >= 0 and sum to 1```
sourceraw docstring

#### normalclj/s

``(normal {:keys [mu sd]})``

Returns a normal distribution. Params: {:mu ∈ ℝ, :sd ∈ ℝ}

```Returns a normal distribution.
Params: {:mu ∈ ℝ, :sd ∈ ℝ}```
sourceraw docstring

#### poissonclj/s

``(poisson lambda)``

Returns a Poisson distribution. Params: lambda ∈ ℝ > 0

```Returns a Poisson distribution.
Params: lambda ∈ ℝ > 0```
sourceraw docstring

source

#### sampleclj/s

``(sample n distribution)``
``(sample n distribution {:keys [seed]})``

Returns n variates from the distribution. An optional seed long will ensure deterministic results

```Returns n variates from the distribution.
An optional seed long will ensure deterministic results```
sourceraw docstring

#### sample-summaryclj/s

``(sample-summary n distribution)``
``(sample-summary n distribution {:keys [seed]})``

Returns a summary count of each variate for a sample of a given length from a discrete distribution such as the Bernoulli, binomial or categorical. An optional seed long will ensure deterministic results

```Returns a summary count of each variate for a sample
of a given length from a discrete distribution
such as the Bernoulli, binomial or categorical.
An optional seed long will ensure deterministic results```
sourceraw docstring

#### summaryclj/s

``(summary distribution)``

Returns the 5-number distribution summary and the interquartile range.

```Returns the 5-number distribution summary
and the interquartile range.```
sourceraw docstring

#### tclj/s

``(t dof)``

Returns a t distribution. Params: dof ∈ ℕ > 0

```Returns a t distribution.
Params: dof ∈ ℕ > 0```
sourceraw docstring

#### uniformclj/s

``(uniform a b)``

Returns a uniform distribution. Params: a ∈ ℝ, b ∈ ℝ

```Returns a uniform distribution.
Params: a ∈ ℝ, b ∈ ℝ```
sourceraw docstring

#### weibullclj/s

``(weibull {:keys [shape scale] :or {shape 1.0 scale 1.0}})``

Returns a weibull distribution. Params: {:shape ∈ ℝ >= 0, :scale ∈ ℝ >= 0}

```Returns a weibull distribution.
Params: {:shape ∈ ℝ >= 0, :scale ∈ ℝ >= 0}```
sourceraw docstring

cljdoc is a website building & hosting documentation for Clojure/Script libraries

× close