Various kernel functions.
Various kernel functions. * RBF (double -> double functions) * vector kernels (vector x vector -> double function; may be positive definite, conditional positive definite, positive semi-definite, mercer) * density estimation * some kernel operations
(bandwidth kernel data h)
Returns infered bandwidth (h).
h can be one of:
:nrd
- rule-of-thumb (scale=1.06):nrd0
- rule-of-thumb (scake=0.9):nrd-adjust
- kernel specific adjustment of :nrd
, doesn't work for silverman
and cauchy
:rlcv
- robust likelihood cross-validation:lcv
- likelihood cross-validation:lscv
- least squares cross-validationReturns infered bandwidth (h). h can be one of: * `:nrd` - rule-of-thumb (scale=1.06) * `:nrd0` - rule-of-thumb (scake=0.9) * `:nrd-adjust` - kernel specific adjustment of `:nrd`, doesn't work for `silverman` and `cauchy` * `:rlcv` - robust likelihood cross-validation * `:lcv` - likelihood cross-validation * `:lscv` - least squares cross-validation
(exp k)
(exp k t)
Kernel wraper. exp of kernel k
with optional scaling value t
.
Kernel wraper. exp of kernel `k` with optional scaling value `t`.
Create vector kernel.
Vector kernel returns a number for two vectors (or numbers)
Kernels can be Mercer, positive definite, conditional positive definite, positive semi-definite or other.
Create vector kernel. Vector kernel returns a number for two vectors (or numbers) Kernels can be Mercer, positive definite, conditional positive definite, positive semi-definite or other.
(kernel-density kernel data)
(kernel-density kernel data bandwidth)
(kernel-density kernel data bandwidth info?)
Returns kernel density estimation function, 1d
Arguments:
kernel
- kernel name or kernel functiondata
- dataparams
- a map containing:
:bandwidth
- bandwidth h:binned?
- if data should be binned, if true
the width of the bin is bandwidth
divided by 5, if is a number then it will be used as denominator. Default: false
.:bandwidth
can be a number or one of:
:nrd
- rule-of-thumb (scale=1.06):nrd0
- rule-of-thumb (scake=0.9):nrd-adjust
- kernel specific adjustment of :nrd
, doesn't work for silverman
and cauchy
:rlcv
- robust likelihood cross-validation:lcv
- likelihood cross-validation:lscv
- least squares cross-validationReturns kernel density estimation function, 1d Arguments: * `kernel` - kernel name or kernel function * `data` - data * `params` - a map containing: * `:bandwidth` - bandwidth h * `:binned?` - if data should be binned, if `true` the width of the bin is `bandwidth` divided by 5, if is a number then it will be used as denominator. Default: `false`. `:bandwidth` can be a number or one of: * `:nrd` - rule-of-thumb (scale=1.06) * `:nrd0` - rule-of-thumb (scake=0.9) * `:nrd-adjust` - kernel specific adjustment of `:nrd`, doesn't work for `silverman` and `cauchy` * `:rlcv` - robust likelihood cross-validation * `:lcv` - likelihood cross-validation * `:lscv` - least squares cross-validation
(kernel-density-ci kernel data)
(kernel-density-ci kernel data bandwidth-or-params)
Create function which returns confidence intervals for given kde method.
Check 6.1.5 http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/tutorials/xlghtmlnode33.html
Arguments:
kernel
- kernel namedata
- sequence of data valuesparams
- map with other parameters (including kernel-density
parameters)
alpha
- confidence level, default: 0.05Returns three values: density, lower confidence value and upper confidence value
Create function which returns confidence intervals for given kde method. Check 6.1.5 http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/tutorials/xlghtmlnode33.html Arguments: * `kernel` - kernel name * `data` - sequence of data values * `params` - map with other parameters (including [[kernel-density]] parameters) * `alpha` - confidence level, default: 0.05 Returns three values: density, lower confidence value and upper confidence value
(mult k1)
(mult k1 k2)
(mult k1 k2 k3)
(mult k1 k2 k3 & r)
Kernel wrapper. Multiply two or more kernels.
Kernel wrapper. Multiply two or more kernels.
RBF kernel creator. RBF is double->double function.
Refer fastmath.kernel.rbf
namespace for details.
RBF kernel creator. RBF is double->double function. Refer `fastmath.kernel.rbf` namespace for details.
(scale k scale)
Kernel wrapper. Scale kernel result.
Kernel wrapper. Scale kernel result.
(wmean kernels)
(wmean kernels weights)
Kernel wrapper. (Weighted) mean of kernel results.
Kernel wrapper. (Weighted) mean of kernel results.
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close