(coeffs->polynomial & coeffs)
Create polynomial object for unrolled coefficients.
Create polynomial object for unrolled coefficients.
(coeffs->ratio-polynomial & coeffs)
Create ratio based polynomial object for unrolled coefficients.
Create ratio based polynomial object for unrolled coefficients.
(complex-evalpoly x & coeffs)
Evaluate complex polynomial
Evaluate complex polynomial
(complex-makepoly coeffs)
Create complex polynomial function for given coefficients
Create complex polynomial function for given coefficients
(complex-mevalpoly x & coeffs)
Evaluate complex polynomial macro version in the form coeffs[0]+coeffs[1]*x+coeffs[2]*x^2+....
Evaluate complex polynomial macro version in the form coeffs[0]+coeffs[1]*x+coeffs[2]*x^2+....
(complex-muladd x y z)
(x y z)
-> (+ z (* x y))
`(x y z)` -> `(+ z (* x y))`
(derivative poly)
(derivative poly order)
Derivative of the polynomial.
Derivative of the polynomial.
(eval-chebyshev-T degree x)
Chebyshev polynomial of the first kind
Chebyshev polynomial of the first kind
(eval-chebyshev-U degree x)
Chebyshev polynomials of the second kind
Chebyshev polynomials of the second kind
(eval-chebyshev-V degree x)
Chebyshev polynomials of the third kind
Chebyshev polynomials of the third kind
(eval-chebyshev-W degree x)
Chebyshev polynomials of the fourth kind
Chebyshev polynomials of the fourth kind
(eval-gegenbauer-C degree x)
(eval-gegenbauer-C degree order x)
Gegenbauer (ultraspherical) polynomials
Gegenbauer (ultraspherical) polynomials
(eval-hermite-H degree x)
Hermite polynomials
Hermite polynomials
(eval-hermite-He degree x)
Hermite polynomials
Hermite polynomials
(eval-jacobi-P degree alpha beta x)
Jacobi polynomials
Jacobi polynomials
(eval-laguerre-L degree x)
(eval-laguerre-L degree order x)
Evaluate generalized Laguerre polynomial
Evaluate generalized Laguerre polynomial
(evalpoly x & coeffs)
Evaluate polynomial for given coefficients
Evaluate polynomial for given coefficients
(ince-C p m e)
(ince-C p m e normalization)
Ince C polynomial of order p and degree m.
normalization
parameter can be :none
(default), :trigonometric
or millers
.
Ince C polynomial of order p and degree m. `normalization` parameter can be `:none` (default), `:trigonometric` or `millers`.
(ince-C-radial p m e)
(ince-C-radial p m e normalization)
Ince C polynomial of order p and degree m.
normalization
parameter can be :none
(default), :trigonometric
or millers
.
Ince C polynomial of order p and degree m. `normalization` parameter can be `:none` (default), `:trigonometric` or `millers`.
(ince-S p m e)
(ince-S p m e normalization)
Ince S polynomial of order p and degree m.
normalization
parameter can be :none
(default), :trigonometric
or millers
.
Ince S polynomial of order p and degree m. `normalization` parameter can be `:none` (default), `:trigonometric` or `millers`.
(ince-S-radial p m e)
(ince-S-radial p m e normalization)
Ince S polynomial of order p and degree m.
normalization
parameter can be :none
(default), :trigonometric
or millers
.
Ince S polynomial of order p and degree m. `normalization` parameter can be `:none` (default), `:trigonometric` or `millers`.
(laguerre-L degree)
(laguerre-L degree order)
Generalized Laguerre polynomials
Generalized Laguerre polynomials
(makepoly coeffs)
Create polynomial function for given coefficients
Create polynomial function for given coefficients
(mevalpoly x & coeffs)
Evaluate polynomial macro version in the form coeffs[0]+coeffs[1]*x+coeffs[2]*x^2+....
Evaluate polynomial macro version in the form coeffs[0]+coeffs[1]*x+coeffs[2]*x^2+....
(mult poly)
(mult poly1 poly2)
Multiply two polynomials.
Multiply two polynomials.
(polynomial coeffs)
Create polynomial object.
Create polynomial object.
(ratio-polynomial coeffs)
Create polynomial operating on ratios.
Create polynomial operating on ratios.
(scale poly v)
Multiply polynomial by scalar
Multiply polynomial by scalar
(sub poly)
(sub poly1 poly2)
Subtract two polynomials
Subtract two polynomials
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close