Liking cljdoc? Tell your friends :D

fastmath.polynomials


addclj

(add poly)
(add poly1 poly2)

Add two polynomials.

Add two polynomials.
sourceraw docstring

bessel-tclj

(bessel-t degree)
source

bessel-yclj

(bessel-y degree)
source

chebyshev-Tclj

(chebyshev-T degree)
source

chebyshev-Uclj

(chebyshev-U degree)
source

chebyshev-Vclj

(chebyshev-V degree)
source

chebyshev-Wclj

(chebyshev-W degree)
source

coeffsclj

(coeffs poly)

Coefficients of polynomial

Coefficients of polynomial
sourceraw docstring

coeffs->polynomialclj

(coeffs->polynomial & coeffs)

Create polynomial object for unrolled coefficients.

Create polynomial object for unrolled coefficients.
sourceraw docstring

coeffs->ratio-polynomialclj

(coeffs->ratio-polynomial & coeffs)

Create ratio based polynomial object for unrolled coefficients.

Create ratio based polynomial object for unrolled coefficients.
sourceraw docstring

complex-evalpolyclj

(complex-evalpoly x & coeffs)

Evaluate complex polynomial

Evaluate complex polynomial
sourceraw docstring

complex-makepolyclj

(complex-makepoly coeffs)

Create complex polynomial function for given coefficients

Create complex polynomial function for given coefficients
sourceraw docstring

complex-mevalpolycljmacro

(complex-mevalpoly x & coeffs)

Evaluate complex polynomial macro version in the form coeffs[0]+coeffs[1]*x+coeffs[2]*x^2+....

Evaluate complex polynomial macro version in the form coeffs[0]+coeffs[1]*x+coeffs[2]*x^2+....
sourceraw docstring

complex-muladdclj

(complex-muladd x y z)

(x y z) -> (+ z (* x y))

`(x y z)` -> `(+ z (* x y))`
sourceraw docstring

degreeclj

(degree poly)
source

derivativeclj

(derivative poly)
(derivative poly order)

Derivative of the polynomial.

Derivative of the polynomial.
sourceraw docstring

eval-bessel-tclj

(eval-bessel-t degree x)
source

eval-bessel-yclj

(eval-bessel-y degree x)
source

eval-chebyshev-Tclj

(eval-chebyshev-T degree x)

Chebyshev polynomial of the first kind

Chebyshev polynomial of the first kind
sourceraw docstring

eval-chebyshev-Uclj

(eval-chebyshev-U degree x)

Chebyshev polynomials of the second kind

Chebyshev polynomials of the second kind
sourceraw docstring

eval-chebyshev-Vclj

(eval-chebyshev-V degree x)

Chebyshev polynomials of the third kind

Chebyshev polynomials of the third kind
sourceraw docstring

eval-chebyshev-Wclj

(eval-chebyshev-W degree x)

Chebyshev polynomials of the fourth kind

Chebyshev polynomials of the fourth kind
sourceraw docstring

eval-gegenbauer-Cclj

(eval-gegenbauer-C degree x)
(eval-gegenbauer-C degree order x)

Gegenbauer (ultraspherical) polynomials

Gegenbauer (ultraspherical) polynomials
sourceraw docstring

eval-hermite-Hclj

(eval-hermite-H degree x)

Hermite polynomials

Hermite polynomials
sourceraw docstring

eval-hermite-Heclj

(eval-hermite-He degree x)

Hermite polynomials

Hermite polynomials
sourceraw docstring

eval-jacobi-Pclj

(eval-jacobi-P degree alpha beta x)

Jacobi polynomials

Jacobi polynomials
sourceraw docstring

eval-laguerre-Lclj

(eval-laguerre-L degree x)
(eval-laguerre-L degree order x)

Evaluate generalized Laguerre polynomial

Evaluate generalized Laguerre polynomial
sourceraw docstring

eval-legendre-Pclj

(eval-legendre-P degree x)
source

eval-meixner-pollaczek-Pclj

(eval-meixner-pollaczek-P degree lambda phi x)
source

evalpolyclj

(evalpoly x & coeffs)

Evaluate polynomial for given coefficients

Evaluate polynomial for given coefficients
sourceraw docstring

evaluateclj

(evaluate poly x)

Evaluate polynomial

Evaluate polynomial
sourceraw docstring

gegenbauer-Cclj

(gegenbauer-C degree)
(gegenbauer-C degree order)
source

hermite-Hclj

(hermite-H degree)
source

hermite-Heclj

(hermite-He degree)
source

ince-Cclj

(ince-C p m e)
(ince-C p m e normalization)

Ince C polynomial of order p and degree m.

normalization parameter can be :none (default), :trigonometric or millers.

Ince C polynomial of order p and degree m.

`normalization` parameter can be `:none` (default), `:trigonometric` or `millers`.
sourceraw docstring

ince-C-coeffsclj

(ince-C-coeffs p m e normalization)
source

ince-C-radialclj

(ince-C-radial p m e)
(ince-C-radial p m e normalization)

Ince C polynomial of order p and degree m.

normalization parameter can be :none (default), :trigonometric or millers.

Ince C polynomial of order p and degree m.

`normalization` parameter can be `:none` (default), `:trigonometric` or `millers`.
sourceraw docstring

ince-Sclj

(ince-S p m e)
(ince-S p m e normalization)

Ince S polynomial of order p and degree m.

normalization parameter can be :none (default), :trigonometric or millers.

Ince S polynomial of order p and degree m.

`normalization` parameter can be `:none` (default), `:trigonometric` or `millers`.
sourceraw docstring

ince-S-coeffsclj

(ince-S-coeffs p m e normalization)
source

ince-S-radialclj

(ince-S-radial p m e)
(ince-S-radial p m e normalization)

Ince S polynomial of order p and degree m.

normalization parameter can be :none (default), :trigonometric or millers.

Ince S polynomial of order p and degree m.

`normalization` parameter can be `:none` (default), `:trigonometric` or `millers`.
sourceraw docstring

jacobi-Pclj

(jacobi-P degree alpha beta)
source

laguerre-Lclj

(laguerre-L degree)
(laguerre-L degree order)

Generalized Laguerre polynomials

Generalized Laguerre polynomials
sourceraw docstring

legendre-Pclj

(legendre-P degree)
source

makepolyclj

(makepoly coeffs)

Create polynomial function for given coefficients

Create polynomial function for given coefficients
sourceraw docstring

meixner-pollaczek-Pclj

(meixner-pollaczek-P degree lambda phi)
source

mevalpolycljmacro

(mevalpoly x & coeffs)

Evaluate polynomial macro version in the form coeffs[0]+coeffs[1]*x+coeffs[2]*x^2+....

Evaluate polynomial macro version in the form coeffs[0]+coeffs[1]*x+coeffs[2]*x^2+....
sourceraw docstring

multclj

(mult poly)
(mult poly1 poly2)

Multiply two polynomials.

Multiply two polynomials.
sourceraw docstring

polynomialclj

(polynomial coeffs)

Create polynomial object.

Create polynomial object.
sourceraw docstring

ratio-polynomialclj

(ratio-polynomial coeffs)

Create polynomial operating on ratios.

Create polynomial operating on ratios.
sourceraw docstring

scaleclj

(scale poly v)

Multiply polynomial by scalar

Multiply polynomial by scalar
sourceraw docstring

subclj

(sub poly)
(sub poly1 poly2)

Subtract two polynomials

Subtract two polynomials
sourceraw docstring

cljdoc is a website building & hosting documentation for Clojure/Script libraries

× close