Bootstrap methods and confidence intervals
Bootstrap methods and confidence intervals
(bootstrap input)(bootstrap input statistic)(bootstrap input
           statistic
           {:keys [rng samples size method antithetic? smoothing dimensions
                   include?]
            :or {samples 500}
            :as params})Create set of samples from given data (nonparametric) or model (parametric).
Input:
:data - sequence:model - model for parametric bootstrap (optional)statistic function which returns statistic value (optional)Parameters:
:samples - number of bootstrapped samples (default: 500):size - forced size of individual sample (default: same as source):method
nil (default) - random:jackknife for leave-one-out jackknife:jackknife+ for positive jackknifefastmath.random/->seq:rng - random number generator (see: fastmath.random/rng):smoothing - smoothing bootstrap:
:kde - kernel density estimation, additional options are: :kernel (default) and :bandwidth (auto):gaussian - add random value from N(0,standard error):distribution - distribution used to auto generate model (distribution) from data:
:real-discrete-distribution - default:integer-discrete-distribution - for integer values:categorical-distribution - for any other type:dimensions - if set to :multi - multidimensional data and models are created:antithetic? - antithetic sampling (default: false):include? - if set to true (default: false) original dataset is included in samplesModel can be:
When model is ommited, function creates discrete distribution. When multidimensional data are provided, models should be created for every dimension (as a sequence).
Create set of samples from given data (nonparametric) or model (parametric).
Input:
* sequence of values (any type) or sequence of sequences for multidimensional data
* a map containing:
    * `:data` - sequence
    * `:model` - model for parametric bootstrap (optional)
* `statistic` function which returns statistic value (optional)
Parameters:
* `:samples` - number of bootstrapped samples (default: 500)
* `:size` - forced size of individual sample (default: same as source)
* `:method`
    *  `nil` (default) - random
    * `:jackknife` for leave-one-out jackknife
    * `:jackknife+` for positive jackknife
    * any method accepted by `fastmath.random/->seq`
* `:rng` - random number generator (see: `fastmath.random/rng`)
* `:smoothing` - smoothing bootstrap:
    * `:kde` - kernel density estimation, additional options are: `:kernel` (default) and `:bandwidth` (auto)
    * `:gaussian` - add random value from N(0,standard error)
* `:distribution` - distribution used to auto generate model (distribution) from data:
    * `:real-discrete-distribution` - default
    * `:integer-discrete-distribution` - for integer values
    * `:categorical-distribution` - for any other type
* `:dimensions` - if set to `:multi` - multidimensional data and models are created
* `:antithetic?` - antithetic sampling (default: false)
* `:include?` - if set to `true` (default: `false`) original dataset is included in samples
Model can be:
* any distribution object
* any 0-arity function which returns random sample
When model is ommited, function creates discrete distribution.
When multidimensional data are provided, models should be created for every dimension (as a sequence).(bootstrap-stats {:keys [data samples] :as input} statistic)Calculate bootstrap analysis.
Arguments:
:data and :samplesstatistic - bootstrap statisticReturns a map containing:
:data, :samples, model and :statistic - from input:t0 - statistic from data (single value):ts - statistic from bootstrap samples (sequence):bias - difference between mean of ts and t0:mean, :median, :variance, :stddev, :sem - statistics from tsCalculate bootstrap analysis. Arguments: * a map containing `:data` and `:samples` * `statistic` - bootstrap statistic Returns a map containing: * `:data`, `:samples`, `model` and `:statistic` - from input * `:t0` - statistic from data (single value) * `:ts` - statistic from bootstrap samples (sequence) * `:bias` - difference between mean of ts and t0 * `:mean`, `:median`, `:variance`, `:stddev`, `:sem` - statistics from ts
(ci-basic boot-data)(ci-basic boot-data alpha)(ci-basic {:keys [t0 ts]} alpha estimation-strategy)Basic percentile confidence interval
:t0 and :ts are obligatory
Basic percentile confidence interval `:t0` and `:ts` are obligatory
(ci-bc boot-data)(ci-bc boot-data alpha)(ci-bc {:keys [t0 ts]} alpha estimation-strategy)Bias-corrected confidence interval
Bias-corrected confidence interval
(ci-bca boot-data)(ci-bca boot-data alpha)(ci-bca {:keys [t0 ts data statistic]} alpha estimation-strategy)Bias-corrected and accelerated confidence interval.
There are two ways to calculate acceleration:
:data and :statistic)ts otherwiseBias-corrected and accelerated confidence interval. There are two ways to calculate acceleration: * jackknife method (when boot-data contains `:data` and `:statistic`) * empirical from bootstrap estimations `ts` otherwise
(ci-normal boot-data)(ci-normal {:keys [t0 ts stddev bias]} alpha)Normal (gaussian) bias-corrected confidence interval
:t0 and :ts are obligatory
Normal (gaussian) bias-corrected confidence interval `:t0` and `:ts` are obligatory
(ci-percentile boot-data)(ci-percentile boot-data alpha)(ci-percentile {:keys [t0 ts]} alpha estimation-strategy)Percentile confidence interval
:t0 and :ts are obligatory
Percentile confidence interval `:t0` and `:ts` are obligatory
(ci-studentized boot-data)(ci-studentized boot-data alpha)(ci-studentized {:keys [t0 ts data samples]} alpha estimation-strategy)Confidence interval from studentized data.
:t0, :ts, :data and :samples are obligatory in boot-data
Confidence interval from studentized data. `:t0`, `:ts`, `:data` and `:samples` are obligatory in `boot-data`
(ci-t boot-data)(ci-t {:keys [t0 ts stddev]} alpha)Student's T confidence interval.
:t0 and :ts are obligatory
Student's T confidence interval. `:t0` and `:ts` are obligatory
(jackknife vs)Generates set of samples using jackknife leave-one-out method
Generates set of samples using jackknife leave-one-out method
(jackknife+ vs)Generates set of samples using jackknife positive method
Generates set of samples using jackknife positive method
cljdoc builds & hosts documentation for Clojure/Script libraries
| Ctrl+k | Jump to recent docs | 
| ← | Move to previous article | 
| → | Move to next article | 
| Ctrl+/ | Jump to the search field |