Even after fixing the training or deployment environment and parallelization scheme, a number of configuration settings and data-handling choices can impact the MXNet performance. In this document, we address some tips for improving MXNet performance.
Performance is mainly affected by the following 4 factors:
For using Intel Xeon CPUs for training and inference, we suggest enabling
USE_MKLDNN = 1
in config.mk
.
We also find that setting the following environment variables can help:
Variable | Description |
---|---|
OMP_NUM_THREADS | Suggested value: vCPUs / 2 in which vCPUs is the number of virtual CPUs. For more information, please see the guide for setting the number of threads using an OpenMP environment variable |
KMP_AFFINITY | Suggested value: granularity=fine,compact,1,0 . For more information, please see the guide for Thread Affinity Interface (Linux* and Windows*). |
MXNET_SUBGRAPH_BACKEND | Set to MKLDNN to enable the subgraph feature for better performance. For more information please see Build/Install MXNet with MKL-DNN |
Note that MXNet treats all CPUs on a single machine as a single device.
So whether you specify cpu(0)
or cpu()
, MXNet will use all CPU cores on the machine.
The following table shows performance of MXNet-1.2.0.rc1, namely number of images that can be predicted per second. We used example/image-classification/benchmark_score.py to measure the performance on different AWS EC2 machines.
AWS EC2 C5.18xlarge:
Batch | Alexnet | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|---|
1 | 390.53 | 81.57 | 124.13 | 62.26 | 76.22 | 32.92 |
2 | 596.45 | 100.84 | 206.58 | 93.36 | 119.55 | 46.80 |
4 | 710.77 | 119.04 | 275.55 | 127.86 | 148.62 | 59.36 |
8 | 921.40 | 120.38 | 380.82 | 157.11 | 167.95 | 70.78 |
16 | 1018.43 | 115.30 | 411.67 | 168.71 | 178.54 | 75.13 |
32 | 1290.31 | 107.19 | 483.34 | 179.38 | 193.47 | 85.86 |
AWS EC2 C5.9xlarge:
Batch | Alexnet | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|---|
1 | 257.77 | 50.61 | 130.99 | 66.95 | 75.38 | 32.33 |
2 | 410.60 | 63.02 | 195.14 | 87.84 | 102.67 | 41.57 |
4 | 462.59 | 62.64 | 263.15 | 109.87 | 127.15 | 50.69 |
8 | 573.79 | 63.95 | 309.99 | 121.36 | 140.84 | 59.01 |
16 | 709.47 | 67.79 | 350.19 | 128.26 | 147.41 | 64.15 |
32 | 831.46 | 69.58 | 354.91 | 129.92 | 149.18 | 64.25 |
AWS EC2 C5.4xlarge:
Batch | Alexnet | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|---|
1 | 214.15 | 29.32 | 114.97 | 47.96 | 61.01 | 23.92 |
2 | 310.04 | 34.81 | 150.09 | 60.89 | 71.16 | 27.92 |
4 | 330.69 | 34.56 | 186.63 | 74.15 | 86.86 | 34.37 |
8 | 378.88 | 35.46 | 204.89 | 77.05 | 91.10 | 36.93 |
16 | 424.00 | 36.49 | 211.55 | 78.39 | 91.23 | 37.34 |
32 | 481.95 | 37.23 | 213.71 | 78.23 | 91.68 | 37.26 |
AWS EC2 C5.2xlarge:
Batch | Alexnet | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|---|
1 | 131.01 | 15.67 | 78.75 | 31.12 | 37.30 | 14.75 |
2 | 182.29 | 18.01 | 98.59 | 39.13 | 45.98 | 17.84 |
4 | 189.31 | 18.25 | 110.26 | 41.35 | 49.21 | 19.32 |
8 | 211.75 | 18.57 | 115.46 | 42.53 | 49.98 | 19.81 |
16 | 236.06 | 19.11 | 117.18 | 42.59 | 50.20 | 19.92 |
32 | 261.13 | 19.46 | 116.20 | 42.72 | 49.95 | 19.80 |
AWS EC2 C5.xlarge:
Batch | Alexnet | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|---|
1 | 36.64 | 3.93 | 27.06 | 10.09 | 12.98 | 5.06 |
2 | 49.21 | 4.49 | 29.67 | 10.80 | 12.94 | 5.14 |
4 | 50.12 | 4.50 | 30.31 | 10.83 | 13.17 | 5.19 |
8 | 54.71 | 4.58 | 30.22 | 10.89 | 13.19 | 5.20 |
16 | 60.23 | 4.70 | 30.20 | 10.91 | 13.23 | 5.19 |
32 | 66.37 | 4.76 | 30.10 | 10.90 | 13.22 | 5.15 |
If using CPUs (not just Intel CPUs -- ARMs also), NNPACK can improve the running performance with 2x~7x, please check nnpack.md for details.
cuDNN
typically accelerates MXNet performance on NVIDIA GPUs significantly,
especially for convolution layers.
We suggest always checking to make sure that a recent cuDNN version is used.
Setting the environment export MXNET_CUDNN_AUTOTUNE_DEFAULT=1
sometimes also helps.
We show results when using various GPUs including K80 (EC2 p2.2xlarge), M60 (EC2 g3.4xlarge), and V100 (EC2 p3.2xlarge).
Based on example/image-classification/benchmark_score.py and MXNet-1.2.0.rc1, with cuDNN 7.0.5
Batch | Alexnet | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|---|
1 | 243.93 | 43.59 | 68.62 | 35.52 | 67.41 | 23.65 |
2 | 338.16 | 49.14 | 113.41 | 56.29 | 93.35 | 33.88 |
4 | 478.92 | 53.44 | 159.61 | 74.43 | 119.18 | 45.23 |
8 | 683.52 | 70.50 | 190.49 | 86.23 | 131.32 | 50.54 |
16 | 1004.66 | 109.01 | 254.20 | 105.70 | 155.40 | 62.55 |
32 | 1238.55 | 114.98 | 285.49 | 116.79 | 159.42 | 64.99 |
64 | 1346.72 | 123.56 | 308.73 | 122.21 | 167.58 | 70.21 |
128 | 1416.91 | OOM | 320.98 | 123.11 | 171.55 | 71.85 |
256 | 1462.97 | OOM | 329.16 | 127.53 | 153.01 | 57.23 |
Batch | Alexnet | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|---|
1 | 243.49 | 59.95 | 101.97 | 48.30 | 95.46 | 39.29 |
2 | 491.04 | 69.14 | 170.35 | 80.27 | 142.61 | 60.17 |
4 | 711.54 | 78.94 | 257.89 | 123.09 | 182.36 | 76.51 |
8 | 1077.73 | 109.34 | 343.42 | 152.82 | 208.74 | 87.27 |
16 | 1447.21 | 144.93 | 390.25 | 166.32 | 220.73 | 92.41 |
32 | 1797.66 | 151.86 | 416.69 | 176.56 | 230.19 | 97.03 |
64 | 1779.38 | 150.18 | 427.51 | 183.47 | 239.12 | 101.59 |
128 | 1787.36 | OOM | 439.04 | 185.29 | 243.31 | 103.39 |
256 | 1899.10 | OOM | 450.22 | 183.42 | 242.36 | 100.98 |
Batch | Alexnet | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|---|
1 | 659.51 | 205.16 | 157.37 | 87.71 | 162.15 | 61.38 |
2 | 1248.21 | 265.40 | 297.34 | 159.24 | 293.74 | 116.30 |
4 | 2122.41 | 333.97 | 520.91 | 279.84 | 479.14 | 195.17 |
8 | 3894.30 | 420.26 | 898.09 | 455.03 | 699.39 | 294.19 |
16 | 5815.58 | 654.16 | 1430.97 | 672.54 | 947.45 | 398.79 |
32 | 7906.09 | 708.43 | 1847.26 | 814.59 | 1076.81 | 451.82 |
64 | 9486.26 | 701.59 | 2134.89 | 899.01 | 1168.37 | 480.44 |
128 | 10177.84 | 703.30 | 2318.32 | 904.33 | 1233.15 | 511.79 |
256 | 10990.46 | 473.62 | 2425.28 | 960.20 | 1155.07 | 449.35 |
Below is the performance result on V100 using float 16.
Batch | VGG 16 | Inception-BN | Inception-v3 | Resnet 50 | Resnet 152 |
---|---|---|---|---|---|
1 | 276.29 | 155.53 | 150.99 | 270.89 | 96.79 |
2 | 476.91 | 296.45 | 282.02 | 493.99 | 176.88 |
4 | 711.92 | 525.05 | 492.45 | 851.15 | 321.52 |
8 | 1047.11 | 900.26 | 807.94 | 1282.36 | 517.66 |
16 | 1299.88 | 1441.41 | 1192.21 | 1722.97 | 724.57 |
32 | 1486.63 | 1854.30 | 1512.08 | 2085.51 | 887.34 |
64 | 1219.65 | 2138.61 | 1687.35 | 2341.67 | 1002.90 |
128 | 1169.81 | 2317.39 | 1818.26 | 2355.04 | 1046.98 |
256 | 764.16 | 2425.16 | 1653.74 | 1991.88 | 976.73 |
Based on example/image-classification/train_imagenet.py and MXNet-1.2.0.rc1, with CUDNN 7.0.5. The benchmark script is available at here, where the batch size for Alexnet is increased by 16x.
K80 (single GPU)
Batch | Alexnet(*16) | Inception-v3 | Resnet 50 |
---|---|---|---|
1 | 300.30 | 10.48 | 15.61 |
2 | 406.08 | 16.00 | 23.88 |
4 | 461.01 | 22.10 | 32.26 |
8 | 484.00 | 26.80 | 39.42 |
16 | 490.45 | 31.62 | 46.69 |
32 | 414.72 | 33.78 | 49.48 |
M60
Batch | Alexnet(*16) | Inception-v3 | Resnet 50 |
---|---|---|---|
1 | 380.96 | 14.06 | 20.55 |
2 | 530.53 | 21.90 | 32.65 |
4 | 600.17 | 31.96 | 45.57 |
8 | 633.60 | 40.58 | 54.92 |
16 | 639.37 | 46.88 | 64.44 |
32 | 576.54 | 50.05 | 68.34 |
V100
Batch | Alexnet(*16) | Inception-v3 | Resnet 50 |
---|---|---|---|
1 | 1629.52 | 21.83 | 34.54 |
2 | 2359.73 | 40.11 | 65.01 |
4 | 2687.89 | 72.79 | 113.49 |
8 | 2919.02 | 118.43 | 174.81 |
16 | 2994.32 | 173.15 | 251.22 |
32 | 2585.61 | 214.48 | 298.51 |
64 | 1984.21 | 247.43 | 343.19 |
128 | OOM | 253.68 | 363.69 |
If more than one GPU or machine are used, MXNet uses kvstore
to communicate data.
It's critical to use the proper type of kvstore
to get the best performance.
Refer to multi_device.md for more
details.
Besides, we can use tools/bandwidth to find the communication cost per batch. Ideally, the communication cost should be less than the time to compute a batch. To reduce the communication cost, we can consider:
--kv-store
options.To make sure you're handling input data in a reasonable way consider the following:
rec
format, then everything should be fine.As of v0.9.1 (with the NNVM merge), MXNet has a built-in profiler that gives detailed information about execution time at the symbol level. This feature complements general profiling tools like nvprof and gprof by summarizing at the operator level, instead of a function, kernel, or instruction level.
In order to be able to use the profiler, you must compile MXNet with the USE_PROFILER=1
flag in config.mk
.
The profiler can then be turned on with an environment variable for an entire program run, or programmatically for just part of a run. See example/profiler for complete examples of how to use the profiler in code, but briefly, the Python code looks like:
mx.profiler.set_config(profile_all=True, filename='profile_output.json')
mx.profiler.set_state('run')
# Code to be profiled goes here...
mx.profiler.set_state('stop')
The mode
parameter can be set to
symbolic
to only include symbolic operationsall
to include all operationsAfter the program finishes, navigate to your browser's tracing (Example - chrome://tracing in a Chrome browser) and load the profile_output.json
file output by the profiler to inspect the results.
Note that the output file can grow extremely large, so this approach is not recommended for general use.
Can you improve this documentation? These fine people already did:
Da Zheng, thinksanky, Sheng Zha, Xinyu Chen, Ken Fehling & Ashok EmaniEdit on GitHub
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close