.. currentmodule:: mxnet.symbol.sparse
This document lists the routines of the sparse symbolic expression package:
.. autosummary::
:nosignatures:
mxnet.symbol.sparse
The Sparse Symbol
API, defined in the symbol.sparse
package, provides
sparse neural network graphs and auto-differentiation.
The storage type of a variable is speficied by the stype
attribute of the variable.
The storage type of a symbolic expression is inferred based on the storage types of the variables and the operators.
>>> a = mx.sym.Variable('a', stype='csr')
>>> b = mx.sym.Variable('b')
>>> c = mx.sym.dot(a, b, transpose_a=True)
>>> type(c)
<class 'mxnet.symbol.Symbol'>
>>> e = c.bind(mx.cpu(), {'a': mx.nd.array([[1,0,0]]).tostype('csr'), 'b':mx.nd.ones((1,2))})
>>> y = e.forward()
# the result storage type of dot(csr.T, dense) is inferred to be `row_sparse`
>>> y
[<RowSparseNDArray 3x2 @cpu(0)>]
>>> y[0].asnumpy()
array([ 1., 1.],
[ 0., 0.],
[ 0., 0.]], dtype=float32)
.. note:: most operators provided in ``mxnet.symbol.sparse`` are similar to those in
``mxnet.symbol`` although there are few differences:
- Only a subset of operators in ``mxnet.symbol`` have efficient sparse implementations in ``mxnet.symbol.sparse``.
- If an operator do not occur in the ``mxnet.symbol.sparse`` namespace, that means the operator does not have an efficient sparse implementation yet. If sparse inputs are passed to such an operator, it will convert inputs to the dense format and fallback to the already available dense implementation.
- The storage types (``stype``) of sparse operators' outputs depend on the storage types of inputs.
By default the operators not available in ``mxnet.symbol.sparse`` infer "default" (dense) storage type for outputs.
Please refer to the API reference section for further details on specific operators.
In the rest of this document, we list sparse related routines provided by the
symbol.sparse
package.
.. autosummary::
:nosignatures:
zeros_like
mxnet.symbol.var
.. autosummary::
:nosignatures:
cast_storage
.. autosummary::
:nosignatures:
concat
.. autosummary::
:nosignatures:
slice
retain
.. autosummary::
:nosignatures:
elemwise_add
elemwise_sub
elemwise_mul
broadcast_add
broadcast_sub
broadcast_mul
broadcast_div
negative
dot
add_n
.. autosummary::
:nosignatures:
sin
tan
arcsin
arctan
degrees
radians
.. autosummary::
:nosignatures:
sinh
tanh
arcsinh
arctanh
.. autosummary::
:nosignatures:
sum
mean
.. autosummary::
:nosignatures:
round
rint
fix
floor
ceil
trunc
.. autosummary::
:nosignatures:
expm1
log1p
.. autosummary::
:nosignatures:
sqrt
square
.. autosummary::
:nosignatures:
clip
abs
sign
.. autosummary::
:nosignatures:
make_loss
stop_gradient
Embedding
LinearRegressionOutput
LogisticRegressionOutput
.. automodule:: mxnet.symbol.sparse
:members:
Can you improve this documentation? These fine people already did:
Haibin Lin, Ziyue Huang, Sheng Zha & Hao JinEdit on GitHub
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close