Liking cljdoc? Tell your friends :D

jdk.awt.Shape

The Shape interface provides definitions for objects that represent some form of geometric shape. The Shape is described by a PathIterator object, which can express the outline of the Shape as well as a rule for determining how the outline divides the 2D plane into interior and exterior points. Each Shape object provides callbacks to get the bounding box of the geometry, determine whether points or rectangles lie partly or entirely within the interior of the Shape, and retrieve a PathIterator object that describes the trajectory path of the Shape outline.

Definition of insideness: A point is considered to lie inside a Shape if and only if:

it lies completely inside theShape boundary or

it lies exactly on the Shape boundary and the space immediately adjacent to the point in the increasing X direction is entirely inside the boundary or

it lies exactly on a horizontal boundary segment and the space immediately adjacent to the point in the increasing Y direction is inside the boundary.

The contains and intersects methods consider the interior of a Shape to be the area it encloses as if it were filled. This means that these methods consider unclosed shapes to be implicitly closed for the purpose of determining if a shape contains or intersects a rectangle or if a shape contains a point.

The Shape interface provides definitions for objects
that represent some form of geometric shape.  The Shape
is described by a PathIterator object, which can express the
outline of the Shape as well as a rule for determining
how the outline divides the 2D plane into interior and exterior
points.  Each Shape object provides callbacks to get the
bounding box of the geometry, determine whether points or
rectangles lie partly or entirely within the interior
of the Shape, and retrieve a PathIterator
object that describes the trajectory path of the Shape
outline.

Definition of insideness:
A point is considered to lie inside a
Shape if and only if:

 it lies completely
inside theShape boundary or

it lies exactly on the Shape boundary and the
space immediately adjacent to the
point in the increasing X direction is
entirely inside the boundary or

it lies exactly on a horizontal boundary segment and the
space immediately adjacent to the point in the
increasing Y direction is inside the boundary.

The contains and intersects methods
consider the interior of a Shape to be the area it
encloses as if it were filled.  This means that these methods
consider
unclosed shapes to be implicitly closed for the purpose of
determining if a shape contains or intersects a rectangle or if a
shape contains a point.
raw docstring

containsclj

(contains this p)
(contains this x y)
(contains this x y w h)

Tests if the interior of the Shape entirely contains the specified rectangular area. All coordinates that lie inside the rectangular area must lie within the Shape for the entire rectangular area to be considered contained within the Shape.

The Shape.contains() method allows a Shape implementation to conservatively return false when:

the intersect method returns true and

the calculations to determine whether or not the Shape entirely contains the rectangular area are prohibitively expensive.

This means that for some Shapes this method might return false even though the Shape contains the rectangular area. The Area class performs more accurate geometric computations than most Shape objects and therefore can be used if a more precise answer is required.

x - the X coordinate of the upper-left corner of the specified rectangular area - double y - the Y coordinate of the upper-left corner of the specified rectangular area - double w - the width of the specified rectangular area - double h - the height of the specified rectangular area - double

returns: true if the interior of the Shape entirely contains the specified rectangular area; false otherwise or, if the Shape contains the rectangular area and the intersects method returns true and the containment calculations would be too expensive to perform. - boolean

Tests if the interior of the Shape entirely contains
 the specified rectangular area.  All coordinates that lie inside
 the rectangular area must lie within the Shape for the
 entire rectangular area to be considered contained within the
 Shape.

 The Shape.contains() method allows a Shape
 implementation to conservatively return false when:


 the intersect method returns true and

 the calculations to determine whether or not the
 Shape entirely contains the rectangular area are
 prohibitively expensive.

 This means that for some Shapes this method might
 return false even though the Shape contains
 the rectangular area.
 The Area class performs
 more accurate geometric computations than most
 Shape objects and therefore can be used if a more precise
 answer is required.

x - the X coordinate of the upper-left corner of the specified rectangular area - `double`
y - the Y coordinate of the upper-left corner of the specified rectangular area - `double`
w - the width of the specified rectangular area - `double`
h - the height of the specified rectangular area - `double`

returns: true if the interior of the Shape
          entirely contains the specified rectangular area;
          false otherwise or, if the Shape
          contains the rectangular area and the
          intersects method returns true
          and the containment calculations would be too expensive to
          perform. - `boolean`
raw docstring

get-boundsclj

(get-bounds this)

Returns an integer Rectangle that completely encloses the Shape. Note that there is no guarantee that the returned Rectangle is the smallest bounding box that encloses the Shape, only that the Shape lies entirely within the indicated Rectangle. The returned Rectangle might also fail to completely enclose the Shape if the Shape overflows the limited range of the integer data type. The getBounds2D method generally returns a tighter bounding box due to its greater flexibility in representation.

Note that the definition of insideness can lead to situations where points on the defining outline of the shape may not be considered contained in the returned bounds object, but only in cases where those points are also not considered contained in the original shape.

If a point is inside the shape according to the contains(point) method, then it must be inside the returned Rectangle bounds object according to the contains(point) method of the bounds. Specifically:

shape.contains(x,y) requires bounds.contains(x,y)

If a point is not inside the shape, then it might still be contained in the bounds object:

bounds.contains(x,y) does not imply shape.contains(x,y)

returns: an integer Rectangle that completely encloses the Shape. - java.awt.Rectangle

Returns an integer Rectangle that completely encloses the
 Shape.  Note that there is no guarantee that the
 returned Rectangle is the smallest bounding box that
 encloses the Shape, only that the Shape
 lies entirely within the indicated  Rectangle.  The
 returned Rectangle might also fail to completely
 enclose the Shape if the Shape overflows
 the limited range of the integer data type.  The
 getBounds2D method generally returns a
 tighter bounding box due to its greater flexibility in
 representation.


 Note that the
 definition of insideness can lead to situations where points
 on the defining outline of the shape may not be considered
 contained in the returned bounds object, but only in cases
 where those points are also not considered contained in the original
 shape.


 If a point is inside the shape according to the
 contains(point) method, then
 it must be inside the returned Rectangle bounds object
 according to the contains(point)
 method of the bounds. Specifically:


  shape.contains(x,y) requires bounds.contains(x,y)


 If a point is not inside the shape, then it might
 still be contained in the bounds object:


  bounds.contains(x,y) does not imply shape.contains(x,y)

returns: an integer Rectangle that completely encloses
                 the Shape. - `java.awt.Rectangle`
raw docstring

get-bounds-2-dclj

(get-bounds-2-d this)

Returns a high precision and more accurate bounding box of the Shape than the getBounds method. Note that there is no guarantee that the returned Rectangle2D is the smallest bounding box that encloses the Shape, only that the Shape lies entirely within the indicated Rectangle2D. The bounding box returned by this method is usually tighter than that returned by the getBounds method and never fails due to overflow problems since the return value can be an instance of the Rectangle2D that uses double precision values to store the dimensions.

Note that the definition of insideness can lead to situations where points on the defining outline of the shape may not be considered contained in the returned bounds object, but only in cases where those points are also not considered contained in the original shape.

If a point is inside the shape according to the contains(point) method, then it must be inside the returned Rectangle2D bounds object according to the contains(point) method of the bounds. Specifically:

shape.contains(p) requires bounds.contains(p)

If a point is not inside the shape, then it might still be contained in the bounds object:

bounds.contains(p) does not imply shape.contains(p)

returns: an instance of Rectangle2D that is a high-precision bounding box of the Shape. - java.awt.geom.Rectangle2D

Returns a high precision and more accurate bounding box of
 the Shape than the getBounds method.
 Note that there is no guarantee that the returned
 Rectangle2D is the smallest bounding box that encloses
 the Shape, only that the Shape lies
 entirely within the indicated Rectangle2D.  The
 bounding box returned by this method is usually tighter than that
 returned by the getBounds method and never fails due
 to overflow problems since the return value can be an instance of
 the Rectangle2D that uses double precision values to
 store the dimensions.


 Note that the
 definition of insideness can lead to situations where points
 on the defining outline of the shape may not be considered
 contained in the returned bounds object, but only in cases
 where those points are also not considered contained in the original
 shape.


 If a point is inside the shape according to the
 contains(point) method, then it must
 be inside the returned Rectangle2D bounds object according
 to the contains(point) method of the
 bounds. Specifically:


  shape.contains(p) requires bounds.contains(p)


 If a point is not inside the shape, then it might
 still be contained in the bounds object:


  bounds.contains(p) does not imply shape.contains(p)

returns: an instance of Rectangle2D that is a
                 high-precision bounding box of the Shape. - `java.awt.geom.Rectangle2D`
raw docstring

get-path-iteratorclj

(get-path-iterator this at)
(get-path-iterator this at flatness)

Returns an iterator object that iterates along the Shape boundary and provides access to a flattened view of the Shape outline geometry.

Only SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point types are returned by the iterator.

If an optional AffineTransform is specified, the coordinates returned in the iteration are transformed accordingly.

The amount of subdivision of the curved segments is controlled by the flatness parameter, which specifies the maximum distance that any point on the unflattened transformed curve can deviate from the returned flattened path segments. Note that a limit on the accuracy of the flattened path might be silently imposed, causing very small flattening parameters to be treated as larger values. This limit, if there is one, is defined by the particular implementation that is used.

Each call to this method returns a fresh PathIterator object that traverses the Shape object geometry independently from any other PathIterator objects in use at the same time.

It is recommended, but not guaranteed, that objects implementing the Shape interface isolate iterations that are in process from any changes that might occur to the original object's geometry during such iterations.

at - an optional AffineTransform to be applied to the coordinates as they are returned in the iteration, or null if untransformed coordinates are desired - java.awt.geom.AffineTransform flatness - the maximum distance that the line segments used to approximate the curved segments are allowed to deviate from any point on the original curve - double

returns: a new PathIterator that independently traverses a flattened view of the geometry of the Shape. - java.awt.geom.PathIterator

Returns an iterator object that iterates along the Shape
 boundary and provides access to a flattened view of the
 Shape outline geometry.

 Only SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point types are
 returned by the iterator.

 If an optional AffineTransform is specified,
 the coordinates returned in the iteration are transformed
 accordingly.

 The amount of subdivision of the curved segments is controlled
 by the flatness parameter, which specifies the
 maximum distance that any point on the unflattened transformed
 curve can deviate from the returned flattened path segments.
 Note that a limit on the accuracy of the flattened path might be
 silently imposed, causing very small flattening parameters to be
 treated as larger values.  This limit, if there is one, is
 defined by the particular implementation that is used.

 Each call to this method returns a fresh PathIterator
 object that traverses the Shape object geometry
 independently from any other PathIterator objects in use at
 the same time.

 It is recommended, but not guaranteed, that objects
 implementing the Shape interface isolate iterations
 that are in process from any changes that might occur to the original
 object's geometry during such iterations.

at - an optional AffineTransform to be applied to the coordinates as they are returned in the iteration, or null if untransformed coordinates are desired - `java.awt.geom.AffineTransform`
flatness - the maximum distance that the line segments used to approximate the curved segments are allowed to deviate from any point on the original curve - `double`

returns: a new PathIterator that independently traverses
         a flattened view of the geometry of the  Shape. - `java.awt.geom.PathIterator`
raw docstring

intersectsclj

(intersects this r)
(intersects this x y w h)

Tests if the interior of the Shape intersects the interior of a specified rectangular area. The rectangular area is considered to intersect the Shape if any point is contained in both the interior of the Shape and the specified rectangular area.

The Shape.intersects() method allows a Shape implementation to conservatively return true when:

there is a high probability that the rectangular area and the Shape intersect, but

the calculations to accurately determine this intersection are prohibitively expensive.

This means that for some Shapes this method might return true even though the rectangular area does not intersect the Shape. The Area class performs more accurate computations of geometric intersection than most Shape objects and therefore can be used if a more precise answer is required.

x - the X coordinate of the upper-left corner of the specified rectangular area - double y - the Y coordinate of the upper-left corner of the specified rectangular area - double w - the width of the specified rectangular area - double h - the height of the specified rectangular area - double

returns: true if the interior of the Shape and the interior of the rectangular area intersect, or are both highly likely to intersect and intersection calculations would be too expensive to perform; false otherwise. - boolean

Tests if the interior of the Shape intersects the
 interior of a specified rectangular area.
 The rectangular area is considered to intersect the Shape
 if any point is contained in both the interior of the
 Shape and the specified rectangular area.

 The Shape.intersects() method allows a Shape
 implementation to conservatively return true when:


 there is a high probability that the rectangular area and the
 Shape intersect, but

 the calculations to accurately determine this intersection
 are prohibitively expensive.

 This means that for some Shapes this method might
 return true even though the rectangular area does not
 intersect the Shape.
 The Area class performs
 more accurate computations of geometric intersection than most
 Shape objects and therefore can be used if a more precise
 answer is required.

x - the X coordinate of the upper-left corner of the specified rectangular area - `double`
y - the Y coordinate of the upper-left corner of the specified rectangular area - `double`
w - the width of the specified rectangular area - `double`
h - the height of the specified rectangular area - `double`

returns: true if the interior of the Shape and
          the interior of the rectangular area intersect, or are
          both highly likely to intersect and intersection calculations
          would be too expensive to perform; false otherwise. - `boolean`
raw docstring

cljdoc is a website building & hosting documentation for Clojure/Script libraries

× close