The Shape interface provides definitions for objects that represent some form of geometric shape. The Shape is described by a PathIterator object, which can express the outline of the Shape as well as a rule for determining how the outline divides the 2D plane into interior and exterior points. Each Shape object provides callbacks to get the bounding box of the geometry, determine whether points or rectangles lie partly or entirely within the interior of the Shape, and retrieve a PathIterator object that describes the trajectory path of the Shape outline.
Definition of insideness: A point is considered to lie inside a Shape if and only if:
it lies completely inside theShape boundary or
it lies exactly on the Shape boundary and the space immediately adjacent to the point in the increasing X direction is entirely inside the boundary or
it lies exactly on a horizontal boundary segment and the space immediately adjacent to the point in the increasing Y direction is inside the boundary.
The contains and intersects methods consider the interior of a Shape to be the area it encloses as if it were filled. This means that these methods consider unclosed shapes to be implicitly closed for the purpose of determining if a shape contains or intersects a rectangle or if a shape contains a point.
The Shape interface provides definitions for objects that represent some form of geometric shape. The Shape is described by a PathIterator object, which can express the outline of the Shape as well as a rule for determining how the outline divides the 2D plane into interior and exterior points. Each Shape object provides callbacks to get the bounding box of the geometry, determine whether points or rectangles lie partly or entirely within the interior of the Shape, and retrieve a PathIterator object that describes the trajectory path of the Shape outline. Definition of insideness: A point is considered to lie inside a Shape if and only if: it lies completely inside theShape boundary or it lies exactly on the Shape boundary and the space immediately adjacent to the point in the increasing X direction is entirely inside the boundary or it lies exactly on a horizontal boundary segment and the space immediately adjacent to the point in the increasing Y direction is inside the boundary. The contains and intersects methods consider the interior of a Shape to be the area it encloses as if it were filled. This means that these methods consider unclosed shapes to be implicitly closed for the purpose of determining if a shape contains or intersects a rectangle or if a shape contains a point.
(contains this p)
(contains this x y)
(contains this x y w h)
Tests if the interior of the Shape entirely contains the specified rectangular area. All coordinates that lie inside the rectangular area must lie within the Shape for the entire rectangular area to be considered contained within the Shape.
The Shape.contains() method allows a Shape implementation to conservatively return false when:
the intersect method returns true and
the calculations to determine whether or not the Shape entirely contains the rectangular area are prohibitively expensive.
This means that for some Shapes this method might return false even though the Shape contains the rectangular area. The Area class performs more accurate geometric computations than most Shape objects and therefore can be used if a more precise answer is required.
x - the X coordinate of the upper-left corner of the specified rectangular area - double
y - the Y coordinate of the upper-left corner of the specified rectangular area - double
w - the width of the specified rectangular area - double
h - the height of the specified rectangular area - double
returns: true if the interior of the Shape
entirely contains the specified rectangular area;
false otherwise or, if the Shape
contains the rectangular area and the
intersects method returns true
and the containment calculations would be too expensive to
perform. - boolean
Tests if the interior of the Shape entirely contains the specified rectangular area. All coordinates that lie inside the rectangular area must lie within the Shape for the entire rectangular area to be considered contained within the Shape. The Shape.contains() method allows a Shape implementation to conservatively return false when: the intersect method returns true and the calculations to determine whether or not the Shape entirely contains the rectangular area are prohibitively expensive. This means that for some Shapes this method might return false even though the Shape contains the rectangular area. The Area class performs more accurate geometric computations than most Shape objects and therefore can be used if a more precise answer is required. x - the X coordinate of the upper-left corner of the specified rectangular area - `double` y - the Y coordinate of the upper-left corner of the specified rectangular area - `double` w - the width of the specified rectangular area - `double` h - the height of the specified rectangular area - `double` returns: true if the interior of the Shape entirely contains the specified rectangular area; false otherwise or, if the Shape contains the rectangular area and the intersects method returns true and the containment calculations would be too expensive to perform. - `boolean`
(get-bounds this)
Returns an integer Rectangle that completely encloses the Shape. Note that there is no guarantee that the returned Rectangle is the smallest bounding box that encloses the Shape, only that the Shape lies entirely within the indicated Rectangle. The returned Rectangle might also fail to completely enclose the Shape if the Shape overflows the limited range of the integer data type. The getBounds2D method generally returns a tighter bounding box due to its greater flexibility in representation.
Note that the definition of insideness can lead to situations where points on the defining outline of the shape may not be considered contained in the returned bounds object, but only in cases where those points are also not considered contained in the original shape.
If a point is inside the shape according to the contains(point) method, then it must be inside the returned Rectangle bounds object according to the contains(point) method of the bounds. Specifically:
shape.contains(x,y) requires bounds.contains(x,y)
If a point is not inside the shape, then it might still be contained in the bounds object:
bounds.contains(x,y) does not imply shape.contains(x,y)
returns: an integer Rectangle that completely encloses
the Shape. - java.awt.Rectangle
Returns an integer Rectangle that completely encloses the Shape. Note that there is no guarantee that the returned Rectangle is the smallest bounding box that encloses the Shape, only that the Shape lies entirely within the indicated Rectangle. The returned Rectangle might also fail to completely enclose the Shape if the Shape overflows the limited range of the integer data type. The getBounds2D method generally returns a tighter bounding box due to its greater flexibility in representation. Note that the definition of insideness can lead to situations where points on the defining outline of the shape may not be considered contained in the returned bounds object, but only in cases where those points are also not considered contained in the original shape. If a point is inside the shape according to the contains(point) method, then it must be inside the returned Rectangle bounds object according to the contains(point) method of the bounds. Specifically: shape.contains(x,y) requires bounds.contains(x,y) If a point is not inside the shape, then it might still be contained in the bounds object: bounds.contains(x,y) does not imply shape.contains(x,y) returns: an integer Rectangle that completely encloses the Shape. - `java.awt.Rectangle`
(get-bounds-2-d this)
Returns a high precision and more accurate bounding box of the Shape than the getBounds method. Note that there is no guarantee that the returned Rectangle2D is the smallest bounding box that encloses the Shape, only that the Shape lies entirely within the indicated Rectangle2D. The bounding box returned by this method is usually tighter than that returned by the getBounds method and never fails due to overflow problems since the return value can be an instance of the Rectangle2D that uses double precision values to store the dimensions.
Note that the definition of insideness can lead to situations where points on the defining outline of the shape may not be considered contained in the returned bounds object, but only in cases where those points are also not considered contained in the original shape.
If a point is inside the shape according to the contains(point) method, then it must be inside the returned Rectangle2D bounds object according to the contains(point) method of the bounds. Specifically:
shape.contains(p) requires bounds.contains(p)
If a point is not inside the shape, then it might still be contained in the bounds object:
bounds.contains(p) does not imply shape.contains(p)
returns: an instance of Rectangle2D that is a
high-precision bounding box of the Shape. - java.awt.geom.Rectangle2D
Returns a high precision and more accurate bounding box of the Shape than the getBounds method. Note that there is no guarantee that the returned Rectangle2D is the smallest bounding box that encloses the Shape, only that the Shape lies entirely within the indicated Rectangle2D. The bounding box returned by this method is usually tighter than that returned by the getBounds method and never fails due to overflow problems since the return value can be an instance of the Rectangle2D that uses double precision values to store the dimensions. Note that the definition of insideness can lead to situations where points on the defining outline of the shape may not be considered contained in the returned bounds object, but only in cases where those points are also not considered contained in the original shape. If a point is inside the shape according to the contains(point) method, then it must be inside the returned Rectangle2D bounds object according to the contains(point) method of the bounds. Specifically: shape.contains(p) requires bounds.contains(p) If a point is not inside the shape, then it might still be contained in the bounds object: bounds.contains(p) does not imply shape.contains(p) returns: an instance of Rectangle2D that is a high-precision bounding box of the Shape. - `java.awt.geom.Rectangle2D`
(get-path-iterator this at)
(get-path-iterator this at flatness)
Returns an iterator object that iterates along the Shape boundary and provides access to a flattened view of the Shape outline geometry.
Only SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point types are returned by the iterator.
If an optional AffineTransform is specified, the coordinates returned in the iteration are transformed accordingly.
The amount of subdivision of the curved segments is controlled by the flatness parameter, which specifies the maximum distance that any point on the unflattened transformed curve can deviate from the returned flattened path segments. Note that a limit on the accuracy of the flattened path might be silently imposed, causing very small flattening parameters to be treated as larger values. This limit, if there is one, is defined by the particular implementation that is used.
Each call to this method returns a fresh PathIterator object that traverses the Shape object geometry independently from any other PathIterator objects in use at the same time.
It is recommended, but not guaranteed, that objects implementing the Shape interface isolate iterations that are in process from any changes that might occur to the original object's geometry during such iterations.
at - an optional AffineTransform to be applied to the coordinates as they are returned in the iteration, or null if untransformed coordinates are desired - java.awt.geom.AffineTransform
flatness - the maximum distance that the line segments used to approximate the curved segments are allowed to deviate from any point on the original curve - double
returns: a new PathIterator that independently traverses
a flattened view of the geometry of the Shape. - java.awt.geom.PathIterator
Returns an iterator object that iterates along the Shape boundary and provides access to a flattened view of the Shape outline geometry. Only SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point types are returned by the iterator. If an optional AffineTransform is specified, the coordinates returned in the iteration are transformed accordingly. The amount of subdivision of the curved segments is controlled by the flatness parameter, which specifies the maximum distance that any point on the unflattened transformed curve can deviate from the returned flattened path segments. Note that a limit on the accuracy of the flattened path might be silently imposed, causing very small flattening parameters to be treated as larger values. This limit, if there is one, is defined by the particular implementation that is used. Each call to this method returns a fresh PathIterator object that traverses the Shape object geometry independently from any other PathIterator objects in use at the same time. It is recommended, but not guaranteed, that objects implementing the Shape interface isolate iterations that are in process from any changes that might occur to the original object's geometry during such iterations. at - an optional AffineTransform to be applied to the coordinates as they are returned in the iteration, or null if untransformed coordinates are desired - `java.awt.geom.AffineTransform` flatness - the maximum distance that the line segments used to approximate the curved segments are allowed to deviate from any point on the original curve - `double` returns: a new PathIterator that independently traverses a flattened view of the geometry of the Shape. - `java.awt.geom.PathIterator`
(intersects this r)
(intersects this x y w h)
Tests if the interior of the Shape intersects the interior of a specified rectangular area. The rectangular area is considered to intersect the Shape if any point is contained in both the interior of the Shape and the specified rectangular area.
The Shape.intersects() method allows a Shape implementation to conservatively return true when:
there is a high probability that the rectangular area and the Shape intersect, but
the calculations to accurately determine this intersection are prohibitively expensive.
This means that for some Shapes this method might return true even though the rectangular area does not intersect the Shape. The Area class performs more accurate computations of geometric intersection than most Shape objects and therefore can be used if a more precise answer is required.
x - the X coordinate of the upper-left corner of the specified rectangular area - double
y - the Y coordinate of the upper-left corner of the specified rectangular area - double
w - the width of the specified rectangular area - double
h - the height of the specified rectangular area - double
returns: true if the interior of the Shape and
the interior of the rectangular area intersect, or are
both highly likely to intersect and intersection calculations
would be too expensive to perform; false otherwise. - boolean
Tests if the interior of the Shape intersects the interior of a specified rectangular area. The rectangular area is considered to intersect the Shape if any point is contained in both the interior of the Shape and the specified rectangular area. The Shape.intersects() method allows a Shape implementation to conservatively return true when: there is a high probability that the rectangular area and the Shape intersect, but the calculations to accurately determine this intersection are prohibitively expensive. This means that for some Shapes this method might return true even though the rectangular area does not intersect the Shape. The Area class performs more accurate computations of geometric intersection than most Shape objects and therefore can be used if a more precise answer is required. x - the X coordinate of the upper-left corner of the specified rectangular area - `double` y - the Y coordinate of the upper-left corner of the specified rectangular area - `double` w - the width of the specified rectangular area - `double` h - the height of the specified rectangular area - `double` returns: true if the interior of the Shape and the interior of the rectangular area intersect, or are both highly likely to intersect and intersection calculations would be too expensive to perform; false otherwise. - `boolean`
cljdoc is a website building & hosting documentation for Clojure/Script libraries
× close